传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4035
真的是一道好题,题解比较麻烦,我自己在纸上写了好大一块草稿才搞出来,不用公式编辑器的话就很难看清楚,所以不上题解啦,贴一个题解的链接:http://blog.csdn.net/balloons2012/article/details/7891054
注意此题卡精度,我一开始eps是1e-8,WA掉了,开到了1e-10,AC~,真是烦卡精度的题。
#include <cstdio>
#include <cstring>
#include <cmath> const int maxn = 20005; int T, n, t1, t2, k[maxn], e[maxn];
int head[maxn], to[maxn << 1], next[maxn << 1], lb, out[maxn];
double a[maxn], b[maxn], c[maxn]; inline void ist(int aa, int ss) {
to[lb] = ss;
next[lb] = head[aa];
head[aa] = lb;
++lb;
++out[aa];
}
bool dfs(int r, int p) {
if (r > 1 && out[r] == 1) {
a[r] = (double)k[r] / 100.0;
b[r] = c[r] = (double)(100 - k[r] - e[r]) / 100.0;
return true;
}
for (int j = head[r]; j != -1; j = next[j]) {
if (to[j] != p) {
dfs(to[j], r);
a[r] += a[to[j]];
b[r] += b[to[j]];
c[r] += c[to[j]];
}
}
double tem = 1.0 - (100 - k[r] - e[r]) * b[r] / 100.0 / out[r];
if (fabs(tem) < 1e-10) {
return false;
}
a[r] = ((k[r] / 100.0) + (100 - k[r] - e[r]) * a[r] / 100.0 / out[r]) / tem;
b[r] = (100 - k[r] - e[r]) / 100.0 / out[r] / tem;
c[r] = ((100 - k[r] - e[r]) / 100.0 + (100 - k[r] - e[r]) * c[r] / 100.0 / out[r]) / tem;
return true;
} int main(void) {
//freopen("in.txt", "r", stdin);
scanf("%d", &T);
for (int kase = 1; kase <= T; ++kase) {
printf("Case %d: ", kase);
memset(head, -1, sizeof head);
memset(next, -1, sizeof next);
lb = 0;
memset(out, 0, sizeof out);
memset(a, 0, sizeof a);
memset(b, 0, sizeof b);
memset(c, 0, sizeof c);
scanf("%d", &n);
for (int i = 1; i < n; ++i) {
scanf("%d%d", &t1, &t2);
ist(t1, t2);
ist(t2, t1);
}
for (int i = 1; i <= n; ++i) {
scanf("%d%d", k + i, e + i);
} if (dfs(1, 0) && fabs(1.0 - a[1]) > 1e-10) {
printf("%f\n", c[1] / (1.0 - a[1]));
}
else {
puts("impossible");
}
}
return 0;
}