利用shared memory计算,并避免bank conflict;通过每个block内部规约,然后再把所有block的计算结果在CPU端累加
代码:
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory>
#include <iostream> #define DATA_SIZE 128
#define TILE_SIZE 64 __global__ void reductionKernel(float *in, float *out){
int tx = threadIdx.x;
int bx = blockIdx.x; __shared__ float data_shm[TILE_SIZE];
data_shm[tx] = in[bx * blockDim.x + tx];
__syncthreads(); for (int i = blockDim.x / ; i > ; i >>= ){
if (tx < i){
data_shm[tx] += data_shm[tx + i];
}
__syncthreads();
} if (tx == )
out[bx] = data_shm[];
} void reduction(){
int out_size = (DATA_SIZE + TILE_SIZE - ) / TILE_SIZE;
float *in = (float*)malloc(DATA_SIZE * sizeof(float));
float *out = (float*)malloc(out_size*sizeof(float));
for (int i = ; i < DATA_SIZE; ++i){
in[i] = i;
}
memset(out, , out_size*sizeof(float)); float *d_in, *d_out;
cudaMalloc((void**)&d_in, DATA_SIZE * sizeof(float));
cudaMalloc((void**)&d_out, out_size*sizeof(float));
cudaMemcpy(d_in, in, DATA_SIZE * sizeof(float), cudaMemcpyHostToDevice); dim3 block(TILE_SIZE, );
dim3 grid(out_size, );
reductionKernel << <grid, block >> >(d_in, d_out); cudaMemcpy(in, d_in, DATA_SIZE * sizeof(float), cudaMemcpyDeviceToHost);
cudaMemcpy(out, d_out, out_size * sizeof(float), cudaMemcpyDeviceToHost); float sum = ;
for (int i = ; i < out_size; ++i){
sum += out[i];
}
std::cout << sum << std::endl; // Check on CPU
float sum_cpu = ;
for (int i = ; i < DATA_SIZE; ++i){
sum_cpu += in[i];
}
std::cout << sum_cpu << std::endl; }