转载于:http://blog.csdn.net/lovelovelovelovelo/article/details/52234971
数据类型
基本数据类型
集合类型,array、map、struct
文件格式,textfile、sequencefile、rcfile
创建表(内部表)
create table employee(
name string comment 'name',
salary float,
subordinates array<string>,
deductions map<string,float>,
address struct<street:string,city:string,state:string,zip:int>
)
row format delimited fields termited by '\t' lines terminated by '\n' stored as textfile;
从文件加载数据,覆盖源表
load data local infile 'path' overwrite into table 'table'
创建外部表
create external table employee(
name string comment 'name',
salary float,
subordinates array<string>,
deductions map<string,float>,
address struct<street:string,city:string,state:string,zip:int>
)
row format delimited fields terminated by '\t'
collection items terminated by ','
map keys terminated by ':'
lines terminated by '\n'
stored as textfile
location '/data/';
表中数据
lucy 11000 tom,jack,dave,kate tom:1200,jack:1560 beijing,changanjie,xichengqu,10000
lily 13000 dave,kate dave:1300,kate:1260 beijing,changanjie,xichengqu,10000
和我们熟悉的关系型数据库不一样,Hive现在还不支持在insert语句里面直接给出一组记录的文字形式,也就是说,hive并不支持INSERT INTO …. VALUES形式的语句。
新建employee.txt,将数据存入文件中,注意字段间用tab,行间换行enter
通过hive命令加载数据
hive> load data local inpath '/root/employee.txt' into table employee;
hive> select * from employee;
OK
lucy 11000.0 ["tom","jack","dave","kate"] {"tom":1200.0,"jack":1560.0} {"street":"beijing","city":"changanjie","state":"xichengqu","zip":10000}
lily 13000.0 ["dave","kate"] {"dave":1300.0,"kate":1260.0} {"street":"beijing","city":"changanjie","state":"xichengqu","zip":10000}
Time taken: 0.054 seconds, Fetched: 2 row(s) select * from table不走mapreduce
由一个表创建另一个表
create table table2 like table1;
从其他表查询创建表
create table table2 as select name,age,add from table1;
hive不同文件读取
stored as textfile:
hadoop fs -text
stored as sequencefile:
hadoop fs -text
stored as rcfile:
hive -service rcfilecat path
stored as input format 'class':
outformat 'class'
分区表操作
alter table employee add if not exists partition(country='')
alter table employee drop if exists partition(country='')
hive分桶
create table bucket_table(
id int,
name string
)
clustered by(id) sorted by(name) into 4 buckets
row format delimited fields terminated by '\t' stored as textfile;
set hive.enforce.bucketing=true;
创建分区表
create table partitionTable(
name string,
age int
)
partitioned by(dt string)
row format delimited fields terminated by '\t'
lines terminated by '\n'
stored as textfile;