题意:
韩信有若干个兵,给定你若干个模数和余数,再给你一个1e18以内的范围限制,求解同余方程组,如果无解,输出“他一定在撒谎”,如果最小解超出范围限制,输出“他可能在撒谎”,否则输出最小解
注意:不保证模数互质,也不保证“他可能在撒谎”的情况答案不爆long long
题解:
因为不保证模数互质,需要用excrt求解。
假算法:把excrt的板子翻译成python,然后一脸自闭地调程序
n=0
m=0
bi=[]
ai=[] def ggcd(_m,_n):
if _n == 0:
_x = 1
_y = 0
return _m,_x
_a1 = _b = 1
_a = _b1 = 0
_c = _m
_d = _n
_q = int(_c//_d)
_r = _c%_d
while _r:
_c = _d
_d = _r
_t = _a1
_a1 = _a
_a = _t-_q*_a
_t = _b1
_b1 = _b
_b = _t-_q*_b
_q = int(_c//_d)
_r = _c%_d
_x = _a
_y = _b
return _d,_x def excrt():
x=0
y=0
k=0
gcd=0
M=bi[1]
ans=ai[1]
#print(ai[1],bi[1])
i=2
while(i<=n): a=M
b=bi[i]
c=(ai[i]-ans%b+b)%b gcd,x=ggcd(a,b)
bg=b//gcd if(c%gcd!=0):
return -1
x=(x*c//gcd)%bg
ans=ans+(x*M)
M=M*bg
ans=(ans+M)%M
#print(M,ans,a,b,c,gcd,bg,x)
i=i+1
return (ans%M+M)%M
#xx=0
#yy=0
#print(exgcd(3,6,xx,yy))
n,m = map(int,input().split())
i=1
ai.append(0)
bi.append(0)
while(i<=n):
u,v=map(int,input().split())
bi.append(u)
ai.append(v)
i=i+1
anss=excrt()
if(anss<0):
print("he was definitely lying")
elif(anss>m):
print("he was probably lying")
else:
print(anss)
#不要吐槽我的空格tab混用了
正解:先暴力枚举,计算两两模数的gcd,判断同余方程组是否有解,在保证有解的情况下,将excrt中的模乘过程改成暴力加(龟龟速乘?),一旦超出范围立刻停止运算。
此方法仅适用于同余方程数量和数值都较小的情况。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll ans,n,a[],p[],base,M; const char *definitely_lie = "he was definitely lying";
const char *probably_lie = "he was probably lying"; int main(){
cin >> n >> M;
for (int i=;i<n;i++) cin >> p[i] >> a[i];
for (int i=;i<n;i++)
for (int j=i+;j<n;j++){
ll d=__gcd(p[i],p[j]);
if (d!=){
if (a[i]%d!=a[j]%d){
puts(definitely_lie);
return ;
}
}
}
ans=; base=;
for (int i=;i<n;i++){
while (ans%p[i]!=a[i]) {
ans+=base;
if (ans>M){
puts(probably_lie);
return ;
}
}
ll gg=p[i]/__gcd(base,p[i]);
if (M/base>=gg) base*=gg;
else {
for (int j=i+;j<n;j++) if (ans%p[j]!=a[j]){
puts(probably_lie);
return ;
}
printf("%lld\n",ans);
return ;
}
}
for (int i=; i<n; i++) assert(ans % p[i] == a[i]);
printf("%lld\n",ans);
return ;
}