title: 【概率论】5-6:正态分布(The Normal Distributions Part II)

categories:

- Mathematic

- Probability

keywords:

- The Normal Distributions

toc: true

date: 2018-03-29 15:02:03

【概率论】5-6:正态分布(The Normal Distributions Part II)-LMLPHP

Abstract: 本文介绍正态分布的数学性质

Keywords: The Normal Distributions

开篇废话

一共要写四篇,哪来那么多废话。

首先我们要从最基础的原始的正态分布的数学原理说起

Properties of Normal Distributions

Definition

到目前为止,我们还没看到正态分布长什么样。

思路:证明一个表达式是不是,p.d.f.,肯定要根据p.d.f.的定义,①不能出现负数,②积分结果是1。

首先观察函数,发现其不可能出现负数,所以性质1符合p.d.f.的性质

那么接下来是求积分,并确保是1,不是说不能积分么,这里怎么做呢?

首先我们令 y=x−μσy=\frac{x-\mu}{\sigma}y=σx−μ​ 那么

∫−∞∞f(x∣μ,σ2)dx=∫−∞∞1(2π)1/2e−12y2dywe shall now let:I=∫−∞∞e−12y2dy
\int^{\infty}_{-\infty}f(x|\mu,\sigma^2)dx=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}}e^{-\frac{1}{2}y^2}dy\\
\text{we shall now let:}\\
I=\int^{\infty}_{-\infty}e^{-\frac{1}{2}y^2}dy
∫−∞∞​f(x∣μ,σ2)dx=∫−∞∞​(2π)1/21​e−21​y2dywe shall now let:I=∫−∞∞​e−21​y2dy

所以我们只要证明 I=(2π)1/2I=(2\pi)^{1/2}I=(2π)1/2 就算是得到结论了,但是怎么证明呢?我们用用1的特点吧,1和1相乘还是1所以我们让两个积分相乘,我们来到了二重积分的世界解决这个问题:

I2=I×I=∫−∞∞e−12y2dy⋅∫−∞∞e−12z2dz=∫−∞∞∫−∞∞e−12(y2+z2)dydzto the polar coordinates r and θ:I2=∫02π∫0∞e−12(r2)rdrdθsubstitute v=r2/2∫0∞e−vdv=1
\begin {aligned}
I^2&=I\times I=\int^{\infty}_{-\infty}e^{-\frac{1}{2}y^2}dy \cdot \int^{\infty}_{-\infty}e^{-\frac{1}{2}z^2}dz\\
&=\int^{\infty}_{-\infty} \int^{\infty}_{-\infty}e^{-\frac{1}{2}(y^2+z^2)}dydz\\
\text{to the polar coordinates } r \text{ and } \theta :\\
I^2&=\int^{2\pi}_{0} \int^{\infty}_{0}e^{-\frac{1}{2}(r^2)}rdrd\theta \\
\text{substitute }v=r^2/2\\
&\int^{\infty}_{0}e^{-v}dv=1
\end{aligned}
I2to the polar coordinates r and θ:I2substitute v=r2/2​=I×I=∫−∞∞​e−21​y2dy⋅∫−∞∞​e−21​z2dz=∫−∞∞​∫−∞∞​e−21​(y2+z2)dydz=∫02π​∫0∞​e−21​(r2)rdrdθ∫0∞​e−vdv=1​

证毕。

也就证明了两个这个积分相乘的结果是1,但是我们并没有求出他的反函数。

m.g.f.

m.g.f. 一旦得到相应的均值和方差就非常简单了。

证明上面定理的唯一办法就是我们求一下正态分布定义中那个p.d.f.的m.g.f.看结果是否一致。

ψ(t)=E(etX)=∫−∞∞1(2π)1/2etx−(x−μ)22σ2dxsquare inside the brackets:tx−(x−μ)22σ2=μt+12σ2t2−[x−(μ+σ2t)]22σ2Therefore:ψ(t)=Ceμt+12σ2t2where: C=∫−∞∞1(2π)1/2σe−[x−(μ+σ2t)]22σ2dx
\begin{aligned}
\psi(t)&=E(e^{tX})=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}}e^{tx-\frac{(x-\mu)^2}{2\sigma^2}}dx\\
\text{square inside the brackets:}\\
tx-\frac{(x-\mu)^2}{2\sigma^2}&=\mu t+\frac{1}{2}\sigma^2t^2-\frac{[x-(\mu+\sigma^2t)]^2}{2\sigma^2}\\
\text{Therefore:}\\
\psi(t)&=Ce^{\mu t+\frac{1}{2}\sigma^2t^2}\\
\text{where: }\\
C&=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}\sigma}e^{-\frac{[x-(\mu+\sigma^2t)]^2}{2\sigma^2}}dx
\end{aligned}
ψ(t)square inside the brackets:tx−2σ2(x−μ)2​Therefore:ψ(t)where: C​=E(etX)=∫−∞∞​(2π)1/21​etx−2σ2(x−μ)2​dx=μt+21​σ2t2−2σ2[x−(μ+σ2t)]2​=Ceμt+21​σ2t2=∫−∞∞​(2π)1/2σ1​e−2σ2[x−(μ+σ2t)]2​dx​

然后我们用 μ+σ2t\mu+\sigma^2tμ+σ2t 替换掉 μ\muμ 并且 C=1C=1C=1 因此证明了结论的正确性

证毕。

节选自原文地址:https://www.face2ai.com/Math-Probability-5-6-The-Normal-Distributions-P2转载请标明出处

05-11 15:39