题意:在平面直角坐标系内给出一些与坐标轴平行的矩形,将这些矩形覆盖的区域求并集,然后问这个区域的周长是多少。(边与边重合的地方不计入周长)

分析:线段树。曾经做过类似的求矩形覆盖的总面积的题。这道题同样要使用扫描线算法。属于线保留型线段树。

我们先领扫描线与y轴平行。

线段树内每个节点除了要记录该区间被覆盖了几层之外,还要记录当前状态下扫描线在该区间(开区间)内与多少条与x轴平行的边相交。

节点上还有两个bool型变量,记录该区间内(包括子树)线段覆盖是否接触到该区间的起始和结束点。

在父节点如果没被整个覆盖,则需要从子区间的起始和结束点来更新父节点两端点的覆盖情况。

更新过程在返回时,父节点的交点数量应等于两子节点交点数量的和,另外特判一下两子区间的公共点(父节点的中点),判断这里是不是覆盖与未覆盖的分界点,如果是则还需要在父节点上增加这个交点。

这样就得知了每段与x轴平行的距离内有多少条线段需要计算,距离乘以数量即可。这样就计算出了所有与x轴平行的周长上的边的总长度。

之后让扫描线与x轴平行即可计算出与y轴平行的所有周长上的边的总长度。

#include <cstdio>
#include <algorithm>
using namespace std;
//scanning from left to right
//discretionize Ys
#define MAX_REC_NUM 5005
#define MAX_INTERVAL MAX_REC_NUM * 2 struct Node
{
int l, r;
Node *pleft, *pright;
int num;
bool to_left, to_right;
int edge_num;
}; int node_cnt;
Node tree[MAX_INTERVAL * ]; struct Interval
{
int start, end;
int pos;
int value;
Interval()
{}
Interval(int start, int end, int pos, int value):start(start), end(end), pos(pos), value(value)
{}
bool operator < (const Interval &a)const
{
if (pos != a.pos)
return pos < a.pos;
return value > a.value;
}
}interval[MAX_REC_NUM * ]; struct Rectangle
{
int l, d, u, r;
}rec[MAX_REC_NUM]; int discrete[MAX_REC_NUM * ];
int discrete_num;
int rec_num;
int interval_num; int get_index(int a)
{
return lower_bound(discrete, discrete + discrete_num, a) - discrete;
} void discretization(int discrete[], int &discrete_num)
{
sort(discrete, discrete + discrete_num);
discrete_num = unique(discrete, discrete + discrete_num) - discrete;
} void input()
{
scanf("%d", &rec_num);
for (int i = ; i < rec_num; i++)
{
int l, d, r, u;
scanf("%d%d%d%d", &l, &d, &r, &u);
rec[i].l = l;
rec[i].r = r;
rec[i].u = u;
rec[i].d = d;
}
} void make_xscan()
{
discrete_num = ;
interval_num = ;
for (int i = ; i < rec_num; i++)
{
int l, d, r, u;
l = rec[i].l;
r = rec[i].r;
u = rec[i].u;
d = rec[i].d;
interval[interval_num++] = Interval(d, u, l, );
interval[interval_num++] = Interval(d, u, r, -);
discrete[discrete_num++] = u;
discrete[discrete_num++] = d;
}
} void make_yscan()
{
discrete_num = ;
interval_num = ;
for (int i = ; i < rec_num; i++)
{
int l, d, r, u;
l = rec[i].l;
r = rec[i].r;
u = rec[i].u;
d = rec[i].d;
interval[interval_num++] = Interval(l, r, d, );
interval[interval_num++] = Interval(l, r, u, -);
discrete[discrete_num++] = l;
discrete[discrete_num++] = r;
}
} void buildtree(Node *proot, int s, int e)
{
proot->l = s;
proot->r = e;
proot->to_left = false;
proot->to_right = false;
proot->num = ;
proot->edge_num = ;
if (s == e)
{
proot->pleft = proot->pright = NULL;
return;
}
node_cnt++;
proot->pleft = tree + node_cnt;
node_cnt++;
proot->pright = tree + node_cnt;
buildtree(proot->pleft, s, (s + e) / );
buildtree(proot->pright, (s + e) / + , e);
} void recount(Node *p)
{
if (p->num > )
{
p->edge_num = ;
p->to_right = p->to_left = true;
return;
}
if (p->pleft == NULL || p->pright == NULL)
{
p->edge_num = ;
p->to_right = p->to_left = false;
return;
}
p->to_left = p->pleft->to_left;
p->to_right = p->pright->to_right;
p->edge_num = p->pleft->edge_num + p->pright->edge_num;
if (p->pleft->to_right != p->pright->to_left)
p->edge_num++;
} void insert(Node *proot, int s, int e, int value)
{
if (s > proot->r || e < proot->l)
return;
s = max(s, proot->l);
e = min(e, proot->r);
if (s == proot->l && e == proot->r)
{
proot->num += value;
recount(proot);
return;
}
insert(proot->pleft, s, e, value);
insert(proot->pright, s, e, value);
recount(proot);
} long long work()
{
long long ans = ;
for (int i = ; i < interval_num; i++)
{
int s = get_index(interval[i].start);
int e = get_index(interval[i].end) - ;
insert(tree, s, e, interval[i].value);
long long line_num = tree->edge_num;
if (tree->to_left)
line_num++;
if (tree->to_right)
line_num++;
if (i != interval_num - )
ans += (interval[i + ].pos - interval[i].pos) * line_num;
}
return ans;
} int main()
{
input();
long long ans = ;
make_xscan();
sort(interval, interval + interval_num);
discretization(discrete, discrete_num);
buildtree(tree, , discrete_num);
ans += work(); make_yscan();
sort(interval, interval + interval_num);
discretization(discrete, discrete_num);
buildtree(tree, , discrete_num);
ans += work(); printf("%lld\n", ans);
return ;
}
05-08 15:09