4446: [Scoi2015]小凸玩密室
Time Limit: 10 Sec Memory Limit: 128 MB
Description
Input
Output
Sample Input
5 1 2
2 1
Sample Output
HINT
对于100%的数据,1≤N≤2×105,1<Ai,Bi≤10^5
(其实我是回来补暑假没写完的题解的)
题解:
(首先我经过激烈的思想斗争,认为那个点亮灯泡的花费计算只与上一个有关(其实是因为前4个太难考虑了...)
事实证明这样做是对的..就是只考虑上一个:(
有了之前做非线性DP的经验,我一开始想的还是合并类型
但是发现数据范围不太对....这似乎是一个介于O(n)和O(n)范围内的DP
我们考虑怎么定义状态,以及怎么转移.
一开始我想的是f[i][j]表示"走完以i为根的子树之后走去j点的最小花费"
但是我发现这个MLE了,2e5开不下
但是这又是一颗完全二叉树,所以我们考虑能不能应用他的一些性质
我们观察到,点灯泡的起点没有确定,但是题目有这样的两个限制:
这样的话,某一个点被点亮的时候只能有三种转移的情况:从儿子走来,从兄弟走来和从父亲走来(废话)
因此,当某一个子树被完全点亮之后,我们就要去某一个他的祖先,或者是他某个祖先的儿子
我们发现上面这两个都与这个节点的祖先有关(这里我们把自己也看成自己的祖先)
由于这是一棵二叉树,我们完全可以通过位运算(左移,右移和异或)来计算出某个节点的某个深度的祖先.
这样,第二维完全不用是O(n)的:我们可以把第二维设为深度,即走完以i为根的子树之后走去深度为j的祖先节点的“XXXX”的最小花费
那么我们再考虑一下:我们这个点的祖先节点可能已经被点亮,也可能没有被点亮。如果已经点亮,我们就必须去点亮祖先的兄弟那棵子树。
因此我们定义两个数组:
f(ather)[i][j]表示走完以i为根的子树之后去点亮深度为j的祖先节点的最小花费
b(rother)[i][j]表示走完以i为根的子树之后去点亮深度为j的祖先节点的兄弟节点的最小花费
接下来我们考虑状态的转移。最好想到的是节点i是叶子节点的情况:直接走去对应的节点即可。
完整代码见下:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=;
typedef long long LL;
int n,l[N],r[N],deep[N];
LL f[N][],b[N][],a[N],lval[N],rval[N],dis[N];
int main()
{
scanf("%d",&n);LL v;int rt;deep[]=;
for(int i=;i<=n;i++)scanf("%lld",&a[i]);
for(int i=;i<n;i++)
{
scanf("%lld",&v);
rt=(i+)>>,deep[i+]=deep[rt]+;
if((i+)&) r[rt]=i+,rval[rt]=v,dis[r[rt]]=dis[rt]+rval[rt];
else l[rt]=i+,lval[rt]=v,dis[l[rt]]=dis[rt]+lval[rt];
}
for(int i=n;i>;i--)
for(int j=;j<=deep[i];j++)
if(!r[i])
if(!l[i])
{
int fa=i>>(deep[i]-j+),fab=(i>>(deep[i]-j))^;
b[i][j]=( dis[i]+dis[fab]-(dis[fa]<<) )*a[fab];
}
else b[i][j]=lval[i]*a[l[i]]+b[l[i]][j];
else b[i][j]=min(lval[i]*a[l[i]]+b[l[i]][deep[i]+]+b[r[i]][j],rval[i]*a[r[i]]+b[r[i]][deep[i]+]+b[l[i]][j]);
for(int i=n;i;i--)
for(int j=;j<=deep[i];j++)
{
if(!r[i])
if(!l[i])
if(!j)f[i][j]=;
else
{
int fa=i>>(deep[i]-j);
f[i][j]=(dis[i]-dis[fa])*a[fa];
}
else f[i][j]=lval[i]*a[l[i]]+f[l[i]][j];
else f[i][j]=min(lval[i]*a[l[i]]+b[l[i]][deep[i]+]+f[r[i]][j],rval[i]*a[r[i]]+b[r[i]][deep[i]+]+f[l[i]][j]);
}
LL ans=f[][];
for(int i=;i<=n;i++)
{
int u=i,bro=u^;
LL tmp=f[u][deep[u]-];
while(u>)
{
if(bro>n)tmp+=a[u>>]*(dis[u>>]-dis[u>>]);
else tmp+=a[bro]*(dis[bro]-dis[u>>])+f[bro][deep[u>>]-];
u>>=,bro=u^;
}
ans=min(ans,tmp);
}
printf("%lld\n",ans);
}