Histogram of Oriented Gridients(HOG) 方向梯度直方图

Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉、模式识别领域很常用的一种描述图像局部纹理的特征。这个特征名字起的也很直白,就是说先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了。那么,接下来介绍一下HOG的具体原理和计算方法,以及一些引申。

1.分割图像

因为HOG是一个局部特征,因此如果你对一大幅图片直接提取特征,是得不到好的效果的。原理很简单。从信息论角度讲,例如一幅640*480的图像,大概有30万个像素点,也就是说原始数据有30万维特征,如果直接做HOG的话,就算按照360度,分成360个bin,也没有表示这么大一幅图像的能力。从特征工程的角度看,一般来说,只有图像区域比较小的情况,基于统计原理的直方图对于该区域才有表达能力,如果图像区域比较大,那么两个完全不同的图像的HOG特征,也可能很相似。但是如果区域较小,这种可能性就很小。最后,把图像分割成很多区块,然后对每个区块计算HOG特征,这也包含了几何(位置)特性。例如,正面的人脸,左上部分的图像区块提取的HOG特征一般是和眼睛的HOG特征符合的。

接下来说HOG的图像分割策略,一般来说有overlap和non-overlap两种,如下图所示。overlap指的是分割出的区块(patch)互相交叠,有重合的区域。non-overlap指的是区块不交叠,没有重合的区域。这两种策略各有各的好处。

【计算机视觉】Histogram of Oriented Gridients(HOG) 方向梯度直方图-LMLPHP【计算机视觉】Histogram of Oriented Gridients(HOG) 方向梯度直方图-LMLPHP

先说overlap,这种分割方式可以防止对一些物体的切割,还是以眼睛为例,如果分割的时候正好把眼睛从中间切割并且分到了两个patch中,提取完HOG特征之后,这会影响接下来的分类效果,但是如果两个patch之间overlap,那么至少在一个patch会有完整的眼睛。overlap的缺点是计算量大,因为重叠区域的像素需要重复计算。

再说non-overlap,缺点就是上面提到的,有时会将一个连续的物体切割开,得到不太“好”的HOG特征,优点是计算量小,尤其是与Pyramid(金字塔)结合时,这个优点更为明显。

2.计算每个区块的方向梯度直方图

将图像分割后,接下来就要计算每个patch的方向梯度直方图。步骤如下:

A.利用任意一种梯度算子,例如:sobel,laplacian等,对该patch进行卷积,计算得到每个像素点处的梯度方向和幅值。具体公式如下:

【计算机视觉】Histogram of Oriented Gridients(HOG) 方向梯度直方图-LMLPHP

其中,Ix和Iy代表水平和垂直方向上的梯度值,M(x,y)代表梯度的幅度值,θ(x,y)代表梯度的方向。

B.将360度(2*PI)根据需要分割成若干个bin,例如:分割成12个bin,每个bin包含30度,整个直方图包含12维,即12个bin。然后根据每个像素点的梯度方向,利用双线性内插法将其幅值累加到直方图中。

【计算机视觉】Histogram of Oriented Gridients(HOG) 方向梯度直方图-LMLPHP【计算机视觉】Histogram of Oriented Gridients(HOG) 方向梯度直方图-LMLPHP

C.(可选)将图像分割成更大的Block,并利用该Block对其中的每个小patch进行颜色、亮度的归一化,这一步主要是用来去掉光照、阴影等影响的,对于光照影响不剧烈的图像,例如很小区域内的字母,数字图像,可以不做这一步。而且论文中也提及了,这一步的对于最终分类准确率的影响也不大。

3.组成特征

将从每个patch中提取出的“小”HOG特征首尾相连,组合成一个大的一维向量,这就是最终的图像特征。可以将这个特征送到分类器中训练了。例如:有4*4=16个patch,每个patch提取12维的小HOG,那么最终特征的长度就是:16*12=192维。

4.一些引申

与pyramid相结合,即PHOG。PHOG指的是,对同一幅图像进行不同尺度的分割,然后计算每个尺度中patch的小HOG,最后将他们连接成一个很长的一维向量,作为特征。例如:对一幅512*512的图像先做3*3的分割,再做6*6的分割,最后做12*12的分割。接下来对分割出的patch计算小HOG,假设为12个bin即12维。那么就有9*12+36*12+144*12=2268维。需要注意的是,在将这些不同尺度上获得的小HOG连接起来时,必须先对其做归一化,因为3*3尺度中的HOG任意一维的数值很可能比12*12尺度中任意一维的数值大很多,这是因为patch的大小不同造成的。PHOG相对于传统HOG的优点,是可以检测到不同尺度的特征,表达能力更强。缺点是数据量和计算量都比HOG大了不少。

【计算机视觉】Histogram of Oriented Gridients(HOG) 方向梯度直方图-LMLPHP

参考文献:

Navneet Dalal and Bill Triggs,《Histograms of Oriented Gradients for Human Detection》,2005

A. Bosch, A. Zisserman, and X. Munoz, 《Representing shape with a spatial pyramid kernel》,2007

05-23 16:56