本文大部分内容总结于其他文章
1.介绍

HOG(Histogram of Oriented Gradient)2005CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集。

 
2.生成过程
HoG feature for human detection(HoG 行人识别)-LMLPHPHoG feature for human detection(HoG 行人识别)-LMLPHP
1)图像归一化
归一化图像的主要目的是提高检测器对光照的鲁棒性,因为实际的人体目标可能出现的各种不同的场合,检测器,必须对光照不太敏感才会有好的效果。 因为颜色信息作用不大所以通常先把image转换为灰度。
 HoG feature for human detection(HoG 行人识别)-LMLPHPgamma压缩公式。
 
2)利用一阶微分计算图像梯度
图像平滑 
对于灰度图像,一般为了去除噪点,所以会先利用离散高斯平滑模板进行平滑。原文中,Dalal等人用了不同尺度的高斯函数(包括σ=0 也就是不做处理)进行对灰度图像进行平滑操作,选择的算子有一阶uncenterd梯度算子【-1 1】,一阶centred梯度算子【-1 0 1】,cubic-corrected 【1 -8 0 8 -1】, 和3*3 sobel 算子等。实验表明在下,不做高斯平划且搭配【-1 0 1】 一阶梯度算子实验效果最佳。可能原因:图像时基于边缘的,平滑会降低边缘信息的对比度,从而减少图像中的信号信息。
梯度法求图像梯度
一阶微分处理一般对灰度阶梯有较强的响应  
一阶微分: 
HoG feature for human detection(HoG 行人识别)-LMLPHP
对于函数f(x,y),在其坐标(x,y)上的梯度是通过如下二维列向量定义的: 
 

Dalal等人利用许多一阶微分模板进行求梯度近似值,但在实验中表明模板[-1,0,1]效果最好。

采用模板[-1,0,1]为例计算图像梯度以及方向,通过梯度模板计算水平和垂直方向的梯度分别如下:
 
3)基于梯度幅值的方向权重投影
HOG结构
通常使用的HOG结构大致有三种:矩形HOG(简称为R-HOG),圆形HOG和中心环绕HOG。它们的单位都是Block(即块)。Dalal的试验证明矩形HOG和圆形HOG的检测效果基本一致,而环绕形HOG效果相对差一些。
一般一个块(Block)都由若干单元(Cell)组成,一个单元都有如干个像素点组成。
在每个Cell中有独立做梯度方向统计,从而以梯度方向为横轴的的直方图,前面我们已经提到过,梯度方向可取0度到180度或0度~360度,但dalal实验表明,对于人体目标检测0度~180度这种忽略度数正负级的方向范围能够取得更好的结果。然后又将这个梯度分布平均分成 个方向角度(orientation bins),每个方向角度范围都会对应一个直方柱。
 
根据Dalal等人实验,在人体目标检测中,在无符号方向角度范围并将其平均分成9份(bins)能取得最好的效果,当bin的数目继续增大效果改变不明显,故一般在人体目标检测中使用bin数目为9范围0~180度的度量方式。
 
Block中各个参数的最终选取:
对于人体对象检测,块的大小为3×3个单元格,单元格的大小为6×6个象素时,检测效果是最好的,错误率约为10%左右。块的大小为2×2个单元格,单元格大小为8×8个象素时,也相差无几。6-8个象素宽的单元格,2-3个单元格宽的块,其错误率都在最低的一个平面上。块的尺寸太大时标准化的作用被削弱了从而导致错误率上升,而如果块的尺寸太小时,有用的信息反而会被过滤掉。
在实际应用中,在Block和Cell划分之后,对于得到各个像区域中,有时候还会为了进行一次高斯平滑,但是对于人体目标检测等问题,该步骤往往可以忽略,实际应用效果不大,估计在主要还是去除区域中噪点,因为梯度对于噪点相当敏感。下图为不同参数下miss rate的对比。
对梯度方向的投影权重方式的选取: 
对于梯度方向的加权投影,一般都采用一个权重投影函数,它可以是像素点的梯度幅值,梯度幅值的平方根或梯度幅值的平方,甚至可以使梯度幅值的省略形式,它们都能够一定程度上反应出像素上一定的边缘信息。根据Dalal等人论文的测试结果,采用梯度幅值量级本身得到的检测效果最佳,使用量级的平方根会轻微降低检测结果,而使用二值的边缘权值表示会严重降低效果(约为5%个单位10-4FPPW(False Positives Per Window))。
 
4)HOG特征向量归一化
对block块内的HOG特征向量进行归一化。对block块内特征向量的归一化主要是为了使特征向量空间对光照,阴影和边缘变化具有鲁棒性。还有归一化是针对每一个block进行的,一般采用的归一化函数有以下四种:

5)得出HOG最终的特征向量
最终我们可以得到一个a*b*c维的特征向量。其中a表示每个cell中方向单元(bin)的数目。b表示block的个数,c表示每个block中cell的数目。
举例说明,上述中我们选择9为每个cell中bin的个数。 block的size是2*2个cell,每个cell由6*6个pixels组成。那么每个block中我们有4*9 = 36个features。
假设滑动的步长是8,那么对于64*128的窗口来说竖直方向要扫描128/8 -1  = 15个block,水平方向要扫描64/8 -1 =7个block。
那么总的特征数目为36*15*7 =3780个

3.HOG的应用:
主要用在object detection 领域,特别是行人检测,智能交通系统,当然也有文章提到把HOG用在手势识别,人脸识别等方面。
 
4.HOG与SIFT区别
HOG和SIFT都属于描述子,以及由于在具体操作上有很多相似的步骤,所以致使很多人误认为HOG是SIFT的一种,其实两者在使用目的和具体处理细节上是有很大的区别的。HOG与SIFT的主要区别如下:
① SIFT是基于关键点特征向量的描述。
② HOG是将图像均匀的分成相邻的小块,然后在所有的小块内统计梯度直方图。
③ SIFT需要对图像尺度空间下对像素求极值点,而HOG中不需要。
④ SIFT一般有两大步骤,第一个步骤是对图像提取特征点,而HOG不会对图像提取特征点。
 
5.HOG的优点:
HOG表示的是边缘(梯度)的结构特征,因此可以描述局部的形状信息;
位置和方向空间的量化一定程度上可以抑制平移和旋转带来的影响;
采取在局部区域归一化直方图,可以部分抵消光照变化带来的影响。
由于一定程度忽略了光照颜色对图像造成的影响,使得图像所需要的表征数据的维度降低了。
而且由于它这种分块分单元的处理方法,也使得图像局部像素点之间的关系可以很好得到的表征。
 
6.HOG的缺点:
描述子生成过程冗长,导致速度慢,实时性差;
很难处理遮挡问题。
由于梯度的性质,该描述子对噪点相当敏感
05-11 18:40