题意:如果两头牛在同一部电影中出现过,那么这两头牛的度就为1, 如果这两头牛a,b没有在同一部电影中出现过,但a,b分别与c在同一部电影中出现过,那么a,b的度为2。以此类推,a与b之间有n头媒介牛,那么a,b的度为n+1。 给出m部电影,每一部给出牛的个数,和牛的编号。问那一头到其他每头牛的度数平均值最小,输出最小平均值乘100

思路:到所有牛的度数的平均值最小,也就是到所有牛的度数总和最小。那么就是找这头牛到其他每头牛的最小度,也就是最短路径,相加再除以(n-1)就是最小平均值。对于如何确定这头牛,我们可以用Floyd枚举,最后记录最下平均值即可。

#include<iostream>
#include <algorithm>
using namespace std;
const int MAXN = 301;
const int INF = 99999;
int d[MAXN][MAXN], dis[MAXN], N, M;
void solve()
{
int ans = INF;
for (int k = 1; k <= N; k++){
for (int i = 1; i <= N; i++){
for (int j = 1; j <= N; j++){
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
}
}
for (int i = 1; i <= N; i++){
for (int j = 1; j <= N; j++){
d[i][0] += d[i][j];
}
d[i][0] = 100 * d[i][0] / (N - 1);
ans = min(ans, d[i][0]);
}
cout << ans << endl;
}
int main()
{
while (cin >> N >> M)
{
for (int i = 1; i <= N; i++)
for (int j = 1; j <= N; j++){
d[i][j] = INF;
if (i == j) d[i][j] = 0;
}
for (int i = 1; i <= M; i++){
int num;
cin >> num;
for (int i = 1; i <= num; i++) cin >> dis[i]; for (int i = 1; i <= num; i++){
for (int j = i + 1; j <= num; j++){
d[dis[i]][dis[j]] = 1;
d[dis[j]][dis[i]] = 1;
}
}
}
solve();
}
return 0;
}
04-17 18:43