1、特征值分解(EVD)
实对称矩阵
在理角奇异值分解之前,需要先回顾一下特征值分解,如果矩阵\(A\)是一个\(m\times m\)的实对称矩阵
(即\(A = A^T\)),那么它可以被分解成如下的形式
Q\left[
\begin{matrix}
\lambda_1 & \cdots & \cdots & \cdots\\
\cdots & \lambda_2 & \cdots & \cdots\\
\cdots & \cdots & \ddots & \cdots\\
\cdots & \cdots & \cdots & \lambda_m\\
\end{matrix}
\right]Q^T
\tag{1-1}
\]
其中\(Q\)为标准正交阵,即有\(QQ^T = I\),\(\Sigma\)为对角矩阵,且上面的矩阵的维度均为\(m\times m\)。\(\lambda_i\)称为特征值
,\(q_i\)是\(Q\)(特征矩阵)中的列向量,称为特征向量
。
一般矩阵
上面的特征值分解,对矩阵有着较高的要求,它需要被分解的矩阵\(A\)为实对称矩阵,但是现实中,我们所遇到的问题一般不是实对称矩阵。那么当我们碰到一般性的矩阵,即有一个\(m \times n\)的矩阵\(A\),它是否能被分解成上面的式(1-1)的形式呢?当然是可以的,这就是我们下面要讨论的内容。
2、奇异值分解(SVD)
2.1 奇异值分解定义
有一个\(m \times n\)的实数矩阵\(A\),我们想要把它分解成如下的形式
\tag{2-1}
\]
其中\(U\)和\(V\)均为单位正交阵,即有\(UU^T=I\)和\(VV^T=I\),\(U\)称为左奇异矩阵
,\(V\)称为右奇异矩阵
,\(\Sigma\)仅在主对角线上有值,我们称它为奇异值
,其它元素均为0。上面矩阵的维度分别为\(U \in R^{m\times m},\ \Sigma \in R^{m\times n},\ V \in R^{n\times n}\)。
一般地\(\Sigma\)有如下形式
\left[
\begin{matrix}
\sigma_1 & 0 & 0 & 0 & 0\\
0 & \sigma_2 & 0 & 0 & 0\\
0 & 0 & \ddots & 0 & 0\\
0 & 0 & 0 & \ddots & 0\\
\end{matrix}
\right]_{m\times n}
\]
图1-1 奇异值分解
对于奇异值分解,我们可以利用上面的图形象表示,图中方块的颜色表示值的大小,颜色越浅,值越大。对于奇异值矩阵\(\Sigma\),只有其主对角线有奇异值,其余均为0。
2.2 奇异值求解
正常求上面的\(U,V,\Sigma\)不便于求,我们可以利用如下性质
\tag{2-2}
\]
\tag{2-3}
\]
可以看到式(2-2)与式(1-1)的形式非常相同,进一步分析,我们可以发现\(AA^T\)和\(A^TA\)也是对称矩阵,那么可以利用式(1-1),做特征值分解。利用式(2-2)特征值分解,得到的特征矩阵即为\(U\);利用式(2-3)特征值分解,得到的特征矩阵即为\(V\);对\(\Sigma\Sigma^T\)或\(\Sigma^T\Sigma\)中的特征值开方,可以得到所有的奇异值。
3、奇异值分解应用
3.1 纯数学例子
假设我们现在有矩阵\(A\),需要对其做奇异值分解,已知
\left[
\begin{matrix}
1 & 5 & 7 & 6 & 1 \cr
2 & 1 & {10} & 4 & 4 \cr
3 & 6 & 7 & 5 & 2 \cr
\end{matrix}
\right]
\]
那么可以求出\(AA^T\)和\(A^TA\),如下
\left[
\begin{matrix}
112 & 105 & 114 \cr
105 & 137 & 110 \cr
114 & 110 & 123 \cr
\end{matrix}
\right] \quad
A^TA =
\left[
\begin{matrix}
14 & 25 & 48 & 29 & 15 \\
25 & 62 & 87 & 64 & 21 \\
48 & 87 & 198 & 117 & 61 \\
29&64&117&77&32\\
15&21&61&32&21
\end{matrix}
\right]
\]
分别对上面做特征值分解,得到如下结果
U =
[[-0.55572489, -0.72577856, 0.40548161],
[-0.59283199, 0.00401031, -0.80531618],
[-0.58285511, 0.68791671, 0.43249337]]
V =
[[-0.18828164, -0.01844501, 0.73354812, 0.65257661, 0.06782815],
[-0.37055755, -0.76254787, 0.27392013, -0.43299171, -0.17061957],
[-0.74981208, 0.4369731 , -0.12258381, -0.05435401, -0.48119142],
[-0.46504304, -0.27450785, -0.48996859, 0.39500307, 0.58837805],
[-0.22080294, 0.38971845, 0.36301365, -0.47715843, 0.62334131]]
奇异值\(\Sigma = \text{Diag}(18.54, 1.83, 5.01)\)
3.2 在图像压缩中的应用
准备工具
下面的代码运行环境为python3.6
+jupyter5.4
SVD(Python)
这里暂时用numpy自带的svd函数做图像压缩。
①读取图片
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
img_eg = mpimg.imread("../img/beauty.jpg")
print(img_eg.shape)
图片的大小是\(600\times 400 \times 3\)
②奇异值分解
img_temp = img_eg.reshape(600, 400 * 3)
U,Sigma,VT = np.linalg.svd(img_temp)
我们先将图片变成\(600\times 1200\),再做奇异值分解。从svd
函数中得到的奇异值sigma
它是从大到小排列的。
③取前部分奇异值重构图片
# 取前60个奇异值
sval_nums = 60
img_restruct1 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot(VT[0:sval_nums,:])
img_restruct1 = img_restruct1.reshape(600,400,3)
# 取前120个奇异值
sval_nums = 120
img_restruct2 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot(VT[0:sval_nums,:])
img_restruct2 = img_restruct2.reshape(600,400,3)
将图片显示出来看一下,对比下效果
fig, ax = plt.subplots(1,3,figsize = (24,32))
ax[0].imshow(img_eg)
ax[0].set(title = "src")
ax[1].imshow(img_restruct1.astype(np.uint8))
ax[1].set(title = "nums of sigma = 60")
ax[2].imshow(img_restruct2.astype(np.uint8))
ax[2].set(title = "nums of sigma = 120")
图3-1 奇异值重构图片
可以看到,当我们取到前面120个奇异值来重构图片时,基本上已经看不出与原图片有多大的差别。
总结
从上面的图片的压缩结果中可以看出来,奇异值可以被看作成一个矩阵的代表值,或者说,奇异值能够代表这个矩阵的信息。当奇异值越大时,它代表的信息越多。因此,我们取前面若干个最大的奇异值,就可以基本上还原出数据本身。
如下,可以作出奇异值数值变化和前部分奇异值和的曲线图,如下图所示
奇异值变化图
从上面的第1个图,可以看出,奇异值下降是非常快的,因此可以只取前面几个奇异值,便可基本表达出原矩阵的信息。从第2个图,可以看出,当取到前100个奇异值时,这100个奇异值的和已经占总和的95%左右。
最后,还有一点需要提到的是,如果自己想不调用np.linalg.svd
函数,手动实现奇异值分解的话,单纯利用第2小节的内容实现,有点不够,有个问题需要注意。这里暂时不多做讨论了,大家有兴趣可以看我下面分享的《SVD(奇异值分解)Python实现》,重点可以看看其中SVD算法实现。