Description
小Q同学现在沉迷炉石传说不能自拔。他发现一张名为克苏恩的牌很不公平。如果你不玩炉石传说,不必担心,小Q
同学会告诉你所有相关的细节。炉石传说是这样的一个游戏,每个玩家拥有一个 30 点血量的英雄,并且可以用牌
召唤至多 7 个随从帮助玩家攻击对手,其中每个随从也拥有自己的血量和攻击力。小Q同学有很多次游戏失败都是
因为对手使用了克苏恩这张牌,所以他想找到一些方法来抵御克苏恩。他去求助职业炉石传说玩家椎名真白,真白
告诉他使用奴隶主这张牌就可以啦。如果你不明白我上面在说什么,不必担心,小Q同学会告诉你他想让你做什么
。现在小Q同学会给出克苏恩的攻击力是 K ,表示克苏恩会攻击 K 次,每次会从对方场上的英雄和随从中随机选
择一个并对其产生 1 点伤害。现在对方有一名克苏恩,你有一些奴隶主作为随从,每名奴隶主的血量是给定的。
如果克苏恩攻击了你的一名奴隶主,那么这名奴隶主的血量会减少 1 点,当其血量小于等于 0 时会死亡,如果受
到攻击后不死亡,并且你的随从数量没有达到 7 ,这名奴隶主会召唤一个拥有 3 点血量的新奴隶主作为你的随从
;如果克苏恩攻击了你的英雄,你的英雄会记录受到 1 点伤害。你应该注意到了,每当克苏恩进行一次攻击,你
场上的随从可能发生很大的变化。小Q同学为你假设了克苏恩的攻击力,你场上分别有 1 点、 2 点、 3 点血量的
奴隶主数量,你可以计算出你的英雄受到的总伤害的期望值是多少吗?
Input
输入包含多局游戏。
第一行包含一个整数 T (T<100) ,表示游戏的局数。
每局游戏仅占一行,包含四个非负整数 K, A, B 和 C ,表示克苏恩的攻击力是 K ,你有 A 个 1 点血量的奴隶
主, B 个 2 点血量的奴隶主, C 个 3 点血量的奴隶主。
保证 K 是小于 50 的正数, A+B+C 不超过 7 。
Output
对于每局游戏,输出一个数字表示总伤害的期望值,保留两位小数。
题目分析
期望dp是真的太不熟了……暴力都能打挂。
#include<cstdio> int T,k,a,b,c;
double ans; void dfs(int done, int n1, int n2, int n3, int bld, double sta)
{
if (done==k||!bld) return;
if (n1) dfs(done+, n1-, n2, n3, bld, sta*n1/(n1+n2+n3+1.0));
if (n2){
if (n1+n2+n3 < )
dfs(done+, n1+, n2-, n3+, bld, sta*n2/(n1+n2+n3+1.0));
else dfs(done+, n1+, n2-, n3, bld, sta*n2/(n1+n2+n3+1.0));
}
if (n3){
if (n1+n2+n3 < )
dfs(done+, n1, n2+, n3, bld, sta*n3/(n1+n2+n3+1.0));
else dfs(done+, n1, n2+, n3-, bld, sta*n3/(n1+n2+n3+1.0));
}
ans += sta/(n1+n2+n3+1.0);
dfs(done+, n1, n2, n3, bld, sta/(n1+n2+n3+1.0));
}
int main()
{
freopen("cthun.in","r",stdin);
freopen("cthun.out","w",stdout);
scanf("%d",&T);
while (T--)
{
ans = ;
scanf("%d%d%d%d",&k,&a,&b,&c);
dfs(, a, b, c, , 1.0);
printf("%.2lf\n",ans);
}
return ;
}
这个是暴力。标红部分意味着:对于n个奴隶主,攻击他们其中一个是不相同的,所以转移到这个状态的概率要乘n。
那么期望dp通常来说状态是倒着表示的:$f[t][i][j][k]$表示初始状态为$(t,i,j,k)$,最终的获得期望是多少。这样做的好处在于,可以预处理出所有的初始状态,并且转移时候会更加方便,不需要记录转移的概率。
所以这也算是一个需要灵活应用的点吧。
#include<cstdio>
#include<cctype> int T,k,a,b,c;
double f[][][][]; int read()
{
int num = ;
bool fl = ;
char ch = getchar();
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int main()
{
freopen("cthun.in","r",stdin);
freopen("cthun.out","w",stdout);
for (int t=; t<=; t++)
for (int i=; i<=; i++)
for (int j=; i+j<=; j++)
for (int k=; i+j+k<=; k++)
{
double sum = i+j+k+1.0;
f[t][i][j][k] += (f[t-][i][j][k]+)/sum;
f[t][i][j][k] += f[t-][i-][j][k]*i/sum;
if (i+j+k < )
f[t][i][j][k] += f[t-][i+][j-][k+]*j/sum,
f[t][i][j][k] += f[t-][i][j+][k]*k/sum;
else
f[t][i][j][k] += f[t-][i+][j-][k]*j/sum,
f[t][i][j][k] += f[t-][i][j+][k-]*k/sum;
}
T = read();
while (T--) printf("%.2lf\n",f[read()][read()][read()][read()]);
return ;
}
END