题意:给出一个整数nnn
, 找出一个大于等于nnn
的最小整数mmm
, 使得mmm
可以表示为2a3b5c7d2^a3^b5^c7^d2a3b5c7d
.
析:预处理出所有形为2a3b5c7d2^a3^b5^c7^d2a3b5c7d
即可, 大概只有5000左右个.然后用二分查找就好。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e3 + 5;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
} vector<LL> ans; void init(){
LL a = 1, b = 1, c = 1, d = 1;
for(; ; a *= 2){
if(a > mod) break;
b = 1;
for(; ; b *= 3){
if(a * b > mod) break;
c = 1;
for(; ; c *= 5){
if(a * b * c > mod) break;
d = 1;
for(; ; d *= 7){
LL sum = a * b * c * d;
if(sum > mod) break;
ans.push_back(sum);
}
}
}
}
sort(ans.begin(), ans.end());
} int main(){
init();
int T; cin >> T;
while(T--){
LL n;
scanf("%I64d", &n);
printf("%I64d\n", *lower_bound(ans.begin(), ans.end(), n));
}
return 0;
}