题目描述

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},

1 = 1

2 = 1+1

3 = 1+1+1

4 = 4

5 = 4+1

6 = 4+1+1

7 = 4+1+1+1

8无法表示为集合S的子集的和,故集合S的神秘数为8。

现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间l,r,求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。

题解

加入我们查询的区间为l-r。

我们先查询有几个1,然后发现有k个,那么然后我们再查询1-k+1有多少数,如果大于等于k+1的话,那么1到k+1都能表出。

重复这个过程即可,最多跳log次。

代码

#include<iostream>
#include<cstdio>
#define N 100002
using namespace std;
typedef long long ll;
const int maxn=1e9;
ll tr[N*],a[N];
int L[N*],R[N*],tot,n,m,T[N];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
void ins(int &cnt,int pre,int l,int r,ll x){
cnt=++tot;
tr[cnt]=tr[pre]+x;L[cnt]=L[pre];R[cnt]=R[pre];
if(l==r)return;
int mid=(l+r)>>;
if(mid>=x)ins(L[cnt],L[pre],l,mid,x);
else ins(R[cnt],R[pre],mid+,r,x);
}
ll query(int cnt,int pre,int l,int r,ll x){
// cout<<cnt<<" "<<pre<<" "<<l<<" "<<r<<" "<<tr[cnt]<<" "<<tr[pre]<<endl;
if(!cnt)return ;
if(r<=x)return tr[cnt]-tr[pre];
int mid=(l+r)>>;
if(mid<x)return tr[L[cnt]]-tr[L[pre]]+query(R[cnt],R[pre],mid+,r,x);
else return query(L[cnt],L[pre],l,mid,x);
}
int main(){
n=rd();int m;
for(int i=;i<=n;++i)a[i]=rd(),ins(T[i],T[i-],,maxn,a[i]);
m=rd();int l,r;
while(m--){
l=rd();r=rd();
// cout<<"****"<<endl;
ll ans=,now=;
while(ans<=maxn){
// cout<<ans<<endl;
ans=query(T[r],T[l-],,maxn,ans);
// cout<<ans<<" "<<now<<endl;
if(ans<now)break;else now=ans+,ans=now;
}
printf("%lld\n",ans+);
}
return ;
}
04-30 19:55