这题有多种做法,一种是倍增预处理出每个点往上走2^i步最少需要的初始战斗力,一种是裸的启发式合并带标记splay。
每个点合并能攻占其儿子的所有骑士,删去所有无法攻占这个城市的骑士并记录答案。
注意到splay每次实际上只需要取出最小的元素判断是否牺牲,这显然可以用堆维护。
关于可并堆打标记:和线段树打标记一样,维护乘法标记a和加法标记b,所有元素表示为ax+b,用同样的方法下传。
注意merge前要先push。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
typedef long long ll;
using namespace std; const int N=;
int n,m,cnt,a[N],fa[N],rt[N],bg[N],ed[N],ls[N],rs[N],dis[N],dep[N],dead[N],to[N],nxt[N],h[N];
ll mul[N],plu[N],v[N],p[N],d[N];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void put(int x,ll a,ll b){
if (!x) return;
v[x]=v[x]*a+b; mul[x]*=a; plu[x]=plu[x]*a+b;
} void push(int x){
put(ls[x],mul[x],plu[x]); put(rs[x],mul[x],plu[x]);
mul[x]=; plu[x]=;
} int merge(int x,int y){
if (!x || !y) return x+y;
push(x); push(y);
if (v[x]>v[y]) swap(x,y);
rs[x]=merge(rs[x],y);
if (dis[ls[x]]<dis[rs[x]]) swap(ls[x],rs[x]);
dis[x]=dis[rs[x]]+; return x;
} int pop(int x){ push(x); return merge(ls[x],rs[x]); } void dfs(int x,int fa){
dep[x]=dep[fa]+;
For(i,x) dfs(k=to[i],x),rt[x]=merge(rt[x],rt[k]);
while (rt[x] && v[rt[x]]<d[x])
dead[x]++,ed[rt[x]]=x,rt[x]=pop(rt[x]);
if (!a[x]) put(rt[x],,p[x]); else put(rt[x],p[x],);
} int main(){
freopen("bzoj4003.in","r",stdin);
freopen("bzoj4003.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,,n) scanf("%lld",&d[i]);
rep(i,,n) scanf("%d%d%lld",&fa[i],&a[i],&p[i]),add(fa[i],i);
rep(i,,m) mul[i]=,scanf("%lld%d",&v[i],&bg[i]),rt[bg[i]]=merge(rt[bg[i]],i);
dfs(,);
rep(i,,n) printf("%d\n",dead[i]);
rep(i,,m) printf("%d\n",dep[bg[i]]-dep[ed[i]]);
return ;
}