数据库中慎用float数据类型
 
大多数编程语言都支持float或者double的数据类型。而数据库中也有相同关键字的数据类型,因此很多开发人员也自然而然地在需要浮点数的地方使用float作为字段类型。  www.2cto.com  
 
但事实上是否float可以适用于所有的业务场景呢?
 
float类型是根据IEEE 754标准使用二进制格式编码实数数据,对于一些小数,比如59.95,float类型会存储了二进制中最接近59.95的值,用十进制表示等于59.950000762939。
当然,有些数据库能够通过某种方式弥补这种数据的不精确性,查询结果在时候可以输出我们所期望的值。
如下面所示:
 
Sql代码  
select  rate from t_refresh where  id  =1;  
  
Returns:59.95  
 但是,如果将这个值扩大十亿倍:  www.2cto.com  
 
Sql代码  
select  rate * 1000000000 from t_refresh where  id  =1;  
  
Return:59950000762.939  
 
这可能和你期望的结果59950000000.000不太一样了。
在上面在例子中,误差在千万分之一内,对于部分的运算来说已经足够了。
然而,在某些运算中,这样的误差是不能容忍的,如比较的操作:
Sql代码  
select  *  from t_refresh where rate  = 59.95  
  
Result:empty set;no rows match,  
 
因为rate的实际存储值是比59.95大一点点。
又如在金融项目中计算复利,需要进行多次浮点数乘法运算,使用float类型会导致误差不断累积。
   www.2cto.com  
因此,在某些业务场景中,我们需要用numeric或者decimal来代替float数据类型。
 
和float类型相比,numeric和decimal存储的是精确值,如果你insert进去的是一个59.95,实际存的也是59.95。
所以在上面在例子中,如果用numeric或者decimal
Sql代码  
select  rate * 1000000000 from t_refresh where  id  =1;  
  
Return:59950000000  
 
Sql代码  
select  id  from t_refresh where rate  = 59.95  
  
Return:1  
 
结论:
 
float适用于精度要求低,   数值范围大的科学运算场景

金融、统计等精度要求高的场景,则需要用numeric或者decimal

05-19 23:26