题目链接:https://cn.vjudge.net/problem/POJ-3436
题意
懒得翻,找了个题意。
流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规格;输入规格中0表示改部件不能有,1表示必须有,2无所谓;输出规格中0表示改部件没有,1表示有。问如何安排流水线(如何建边)使产量最高。
思路
建图如下
说一下为什么要拆点,若不拆点:
当每台机器节点的入度大于1且出度大于1时,经过这个节点的流量没法限制在容量下。
提交过程
AC |
代码
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=50+20, INF=1e8;
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):
from(u), to(v), cap(c), flow(f) {}
};
struct Dinic{
int n, m, s, t;
vector<int> G[maxn];
vector<Edge> edges;
bool vis[maxn];
int dep[maxn], cur[maxn];
void init(int n){
this->n=n;
for (int i=0;i<=n;i++) G[i].clear();
edges.clear();
}
void addEdge(int from, int to, int cap){
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool bfs(void){
memset(vis, false, sizeof(vis));
queue<int> Q;
vis[s]=true;
dep[s]=0;
Q.push(s);
while(!Q.empty()){
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();i++){
Edge &e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow){
vis[e.to]=1;
dep[e.to]=dep[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x, int a){//a当前为止所有弧的最小残量
if(x==t || a==0)return a;
int flow=0, f;
for(int &i=cur[x];i<G[x].size();i++) {//cur当前弧优化
Edge &e=edges[G[x][i]];
if(dep[e.to]==dep[x]+1 && (f=dfs(e.to, min(a, e.cap-e.flow)))>0){
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0)break;
}
}
return flow;
}
int maxFlow(int s, int t){
this->s=s; this->t=t;
int flow=0;
while(bfs()){
memset(cur, 0, sizeof(cur));
flow+=dfs(s, INF);
}
return flow;
}
void bugs(void){
for (int i=0; i<=n; i++){
printf("%d: ", i);
for (int j=0; j<G[i].size(); j++)
if (edges[G[i][j]].cap!=0)
printf("%d(%d) ", edges[G[i][j]].to, edges[G[i][j]].cap);
printf("\n");
}
}
void show(int st, int end){
int from[maxn*maxn], to[maxn*maxn], flow[maxn*maxn];
int size=0;
int ans=maxFlow(0, 1);
if (ans==0){
printf("0 0\n");
return;
}
for (int i=st; i<=end; i++){
for (int j=0; j<G[i].size(); j++){
Edge &e=edges[G[i][j]];
if (e.cap==INF && e.flow>0 && e.from!=0 && e.to!=1){
from[size]=e.from;
to[size]=e.to;
flow[size++]=e.flow;
}
}
}
printf("%d %d\n", ans, size);
for (int i=0; i<size; i++)
printf("%d %d %d\n", from[i]/2, to[i]/2, flow[i]);
}
}dinic;
int n, m, in[maxn][15], out[maxn][15], cap[maxn];
bool match(int j, int i){
for (int k=0; k<m; k++)
if (out[j][k]!=in[i][k] && in[i][k]!=2)
return false;
return true;
}
void makeGraph(void){
for (int i=2; i<=n+1; i++){
dinic.addEdge(i*2-2, i*2-1, cap[i]);
for (int j=2; j<=n+1; j++) if (i!=j){
if (match(j, i)) dinic.addEdge(j*2-1, i*2-2, INF);
}
if (match(0, i)) dinic.addEdge(0, i*2-2, INF);
if (match(i, 1)) dinic.addEdge(i*2-1, 1, INF);
}
}
int main(void){
int from, to, tmp;
while (scanf("%d%d", &m, &n)==2 && n){
dinic.init(n*2+1);
for (int i=0; i<m; i++) in[1][i]=1;
for (int i=0; i<m; i++) out[0][i]=0;
for (int i=2; i<=n+1; i++){
scanf("%d", &cap[i]);
for (int j=0; j<m; j++) scanf("%d", &in[i][j]);
for (int j=0; j<m; j++) scanf("%d", &out[i][j]);
}
makeGraph();
// dinic.bugs();
dinic.show(2, n*2+1);
}
return 0;
}
208kB | 3993 | C++ | 2018-08-17 04:42:53 |