spoj 1812 LCS2 - Longest Common Substring II



题意:

给出最多n个字符串A[1], ..., A[n], 求这n个字符串的最长公共子串。



限制:

1 <= n <= 10

|A[i]| <= 1e5



思路:

和spoj 1811 LCS几乎相同的做法



把当中一个A建后缀自己主动机

考虑一个状态s, 假设A之外的其它串对它的匹配长度各自是a[1], a[2], ..., a[n - 1], 那么min(a[1], a[2], ..., a[n - 1], Max(s))就能够更新答案。

注意:

我们求的是对于随意一个Right集合中的r。最大的匹配长度。那么对于一个状态s。它的结果自然也能够作为它Parent的结果,我们能够从底到上更新一遍。

这个能够通过一次拓扑排序搞定。

/*spoj 1812 LCS2 - Longest Common Substring II
题意:
给出最多n个字符串A[1], ..., A[n], 求这n个字符串的最长公共子串。 限制:
1 <= n <= 10
|A[i]| <= 1e5
思路:
和spoj 1811 LCS几乎相同的做法 把当中一个A建后缀自己主动机
考虑一个状态s, 假设A之外的其它串对它的匹配长度各自是a[1], a[2], ..., a[n - 1], 那么min(a[1], a[2], ..., a[n - 1], Max(s))就能够更新答案。 注意:
我们求的是对于随意一个Right集合中的r,最大的匹配长度。那么对于一个状态s,它的结果自然也能够作为它Parent的结果。我们能够从底到上更新一遍。
这个能够通过一次拓扑排序搞定。 */
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 1e5 + 5;
char str[15][N]; int maxx[2 * N], minn[2 * N]; struct SAM {
struct Node {
int fa, ch[27];
int val;
void init() {
fa = val = 0;
memset(ch, 0, sizeof(ch));
}
} node[2 * N]; int tot;
int new_node() {
node[++tot].init();
return tot;
} int root, last;
void init() {
root = last = tot = 1;
node[0].init();
node[1].init();
} void add(int x) {
int p = last;
int np = new_node(); node[np].val = node[p].val + 1;
while(p && node[p].ch[x] == 0) {
node[p].ch[x] = np;
p = node[p].fa;
}
if(p == 0)
node[np].fa = root;
else {
int q = node[p].ch[x];
if(node[p].val + 1 == node[q].val)
node[np].fa = q;
else {
int nq = new_node(); node[nq].val = node[p].val + 1;
memcpy(node[nq].ch, node[q].ch, sizeof(node[q].ch));
node[nq].fa = node[q].fa;
node[q].fa = node[np].fa = nq;
while(p && node[p].ch[x] == q) {
node[p].ch[x] = nq;
p = node[p].fa;
}
}
}
last = np;
}
void debug() {
for(int i = 1; i <= tot; ++i) {
printf("id=%d, fa=%d, step=%d, ch=[ ", i, node[i].fa, node[i].val);
for(int j = 0; j < 26; ++j) {
if(node[i].ch[j])
printf("%c,%d ", j+'a', node[i].ch[j]);
}
puts("]");
}
} void gao(int);
} sam; int du[2 * N];
int que[2 * N], fr, ta;
int b[2 * N], b_tot; void SAM::gao(int n) {
init();
int len1 = strlen(str[0]);
for(int i = 0; i < len1; ++i)
add(str[0][i] - 'a'); //debug(); b_tot = fr = ta = 0;
for(int i = 1; i <= tot; ++i)
++du[node[i].fa];
for(int i = 1; i <= tot; ++i)
if(du[i] == 0) que[ta++] = i, b[b_tot++] = i;
while(fr != ta) {
int u = que[fr++];
int v = node[u].fa;
--du[v];
if(du[v] == 0) que[ta++] = v, b[b_tot++] = v;
} for(int i = 1; i <= tot; ++i)
minn[i] = node[i].val;
for(int i = 1; i < n; ++i) {
int len = strlen(str[i]);
int p = root;
int tmp = 0;
fill(maxx, maxx + tot + 1, 0);
for(int j = 0; j < len; ++j) {
int x = str[i][j] - 'a';
if(node[p].ch[x]) {
++tmp;
p = node[p].ch[x];
} else {
while(p && node[p].ch[x] == 0)
p = node[p].fa;
if(p) {
tmp = node[p].val + 1;
p = node[p].ch[x];
} else {
p = root;
tmp = 0;
}
}
maxx[p] = max(maxx[p], tmp);
}
for(int j = 0; j < tot; ++j) {
int u = b[j];
minn[u] = min(minn[u], maxx[u]);
int v = node[u].fa;
maxx[v] = max(maxx[v], maxx[u]);
}
}
int ans = 0;
for(int i = 1; i <= tot; ++i)
ans = max(ans, minn[i]);
printf("%d\n", ans);
} int main() {
int n = 0;
while(scanf("%s", str[n]) != EOF) ++n;
sam.gao(n);
return 0;
}
04-28 19:16