题意:
给定一棵有根树,每个节点有一些石子,每次可以将不多于k的石子移动到父节点
修改一个点的石子数,插入一个点,询问某棵子树是否先手必胜
显然是一个阶梯Nim
每次最多取k个,找规律或者观察式子易发现就是$mod (k+1)$后的Nim
问题变为:
修改点权,插入点,询问某棵子树内某一深度的点权异或和
于是放大招了:伪$ETT$
真正的ETT貌似维护的是边,欧拉遍历序列也是边组成的序列
但我们用Splay来维护欧拉遍历的点的序列,入栈出栈时都加入队列,+1,-1,好像也叫括号序列
$build$过程中保存下每个点入栈和出栈对应的Splay上的节点编号,入栈正出栈负(一开始节点编号和序列编号是一样的)
本题的子树不需要根所以询问子树只要把那段区间splay出来就行了,需要根的找出区间的前驱后继splay他们就好了
加入新节点,分配两个dfs序编号给它,把新父亲和后继splay出来然后连上再更新就行了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define lc t[x].ch[0]
#define rc t[x].ch[1]
#define pa t[x].fa
#define pii pair<int, int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
const int N=1e5, INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} int n, m, k, a[N], Q, op, x, y, z, id[N]; struct edge{int v, ne;} e[N<<];
int cnt, h[N];
inline void ins(int u, int v) {
e[++cnt]=(edge){v, h[u]}; h[u]=cnt;
}
int eul[N<<], dfc, deep[N];
pii dfn[N];
void dfs(int u) {
dfn[u].fir = ++dfc; eul[dfc]=u;
for(int i=h[u];i;i=e[i].ne)
deep[e[i].v] = deep[u]^, dfs(e[i].v);
dfn[u].sec = ++dfc; eul[dfc]=-u;
} struct meow{int ch[], fa, v, sg[], deep;} t[N<<];
int root;
inline int wh(int x) {return t[pa].ch[] == x;}
inline void update(int x) {
t[x].sg[] = t[lc].sg[]^t[rc].sg[];
t[x].sg[] = t[lc].sg[]^t[rc].sg[];
t[x].sg[t[x].deep] ^= t[x].v;
} inline void rotate(int x) {
int f=t[x].fa, g=t[f].fa, c=wh(x);
if(g) t[g].ch[wh(f)] = x; t[x].fa=g;
t[f].ch[c] = t[x].ch[c^]; t[t[f].ch[c]].fa=f;
t[x].ch[c^]=f; t[f].fa=x;
update(f); update(x);
}
inline void splay(int x, int tar) {
for(; pa!=tar; rotate(x))
if(t[pa].fa != tar) rotate(wh(x)==wh(pa) ? pa : x);
if(tar==) root=x;
} void build(int &x, int l, int r, int f) {
int mid = (l+r)>>; x=mid;
t[x].fa=f; t[x].deep = deep[abs(eul[mid])];
if(eul[mid]>) t[x].v = a[eul[mid]];
if(l<mid) build(lc, l, mid-, x);
if(mid<r) build(rc, mid+, r, x);
update(x);
} int Que(int u) {
int p = dfn[u].fir; splay(p, );
int x = dfn[u].sec; splay(x, p);
return t[lc].sg[deep[u]^] > ;
}
void ChaVal(int u, int d) {
int x = dfn[u].fir; splay(x, );
t[x].v = d; update(x);
}
inline int nex(int x) {
x = rc; while(lc) x = lc; return x;
}
void Add(int u, int v, int d) {
int p = dfn[u].fir; splay(p, );
int x = nex(p); splay(x, p); int a = ++dfc, b = ++dfc;
dfn[v] = MP(a, b);
t[a].ch[] = b; t[b].fa = a;
t[a].fa = x; t[x].ch[] = a;
t[a].v = d; t[a].deep = t[b].deep = deep[v] = deep[u]^;
update(a); update(x); update(p);
} int main() {
freopen("in","r",stdin);
n=read(); k=read()+;
for(int i=; i<=n; i++) a[i]=read()%k, id[i]=i;
for(int i=; i<n; i++) x=read(), y=read(), ins(x, y);
dfs(); build(root, , dfc, );
Q=read();
int meizi=, ans;
for(int i=; i<=Q; i++) {
op=read();
x=read()^meizi; x=id[x];
if(op==) ans=Que(x), meizi+=ans, puts(ans ? "MeiZ" : "GTY");
else {
y=read()^meizi;
if(op==) ChaVal(x, y%k);
else z=(read()^meizi)%k, Add(x, id[y]=++n, z);
} }
return ;
}