题目

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

题解

这道题需要用动态规划做,如果用I的DFS的方法做会TLE。

首先设置dp变量 cuts[len+1]。cuts[i]表示从第i位置到第len位置(包含,即[i, len])的切割数(第len位置为空)。

初始时,是len-i。比如给的例子aab,cuts[0]=3,就是最坏情况每一个字符都得切割:a|a|b|' '。cuts[1] = 2, 即从i=1位置开始,a|b|' '。

cuts[2] = 1 b|' '。cuts[3]=0,即第len位置,为空字符,不需要切割。

上面的这个cuts数组是用来帮助算最小cuts的。

还需要一个dp二维数组matrixs[i][j]表示字符串[i,j]从第i个位置(包含)到第j个位置(包含) 是否是回文。

如何判断字符串[i,j]是不是回文?

1. matrixs[i+1][j-1]是回文且 s.charAt(i) == s.charAt(j)。

2. i==j(i,j是用一个字符)

3. j=i+1(i,j相邻)且s.charAt(i) == s.charAt(j)

当字符串[i,j]是回文后,说明从第i个位置到字符串第len位置的最小cut数可以被更新了,

那么就是从j+1位置开始到第len位置的最小cut数加上[i,j]                      cuts[i] = len - i;              
                                                                || (s.charAt(i) == s.charAt(j) && matrix[i+1][j-1]))  
                 {  
                     matrix[i][j] =                      cuts[i] = Math.min(cuts[i], cuts[j+1]+1);  
                 }  
             }  
         }  
         min = cuts[0]-1;  
              }

Reference:http://blog.csdn.net/ljphhj/article/details/22573983

04-17 05:14