题目中矩形的尺寸太大,导致墓地的数目太多,如果我们统计每一个墓地的虔诚度,超时是一定的。
而常青树的数目<=1e5.这启发我们从树的方向去思考。
考虑一行没有树的情况,显然这一行的墓地的虔诚度之和为0.也就是说我们可需要考虑常青树在的行就行了。
对于在同一行的每两颗长青树之间,墓地的虔诚度之和为C(l,k)*C(r,k)*sigma(C(up,k)*C(under,k)).这里的l是左边的这棵树的左边有多少颗树,r同理。up则是这一段的每个墓地上面有多少颗树,under同理。对于求和,我们可以用树状数组logn的时间查询。
而扫描完一颗树的时候,需要更新C(up,k)*C(under,k).因为树的数目<=1e5,所以总复杂度不过O(n*logn).
所以我们只需要预处理出组合数,然后离散化x坐标,再一行一行的利用BIT查询并更新。
这里的一个优化常数的小技巧是:由于题目要求对1<<31取模,中途过程中可以让int自然溢出,最后的答案mod((1<<31)-1)即可。
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Node{int x, y;}node[N];
int C[N][], tree[N], siz, col[N], now[N];
VI v;
vector<PII> vv; bool comp(Node a, Node b){
if (a.y==b.y) return a.x<b.x;
else return a.y<b.y;
}
void init(){
FOR(i,,) C[i][]=;
FOR(i,,) FOR(j,,) C[i][j]=C[i-][j]+C[i-][j-];
}
void add(int x, int val){while (x<=siz) tree[x]+=val, x+=lowbit(x);}
int query(int x){
int res=;
while (x) res+=tree[x], x-=lowbit(x);
return res;
}
int cal(int x, int y){return x<y?:C[x][y];}
int main ()
{
init();
int n, m, T, k, ans=;
n=Scan(); m=Scan(); T=Scan();
FOR(i,,T) node[i].x=Scan(), node[i].y=Scan(), v.pb(node[i].x);
k=Scan();
sort(node+,node+T+,comp);
sort(v.begin(),v.end());
siz=unique(v.begin(),v.end())-v.begin();
FOR(i,,T) {
node[i].x=lower_bound(v.begin(),v.begin()+siz,node[i].x)-v.begin()+;
++col[node[i].x];
}
int i=;
while (i<=T) {
vv.clear();
vv.pb(mp(node[i].x,node[i].y));
++i;
while (i<=T&&node[i].y==node[i-].y) vv.pb(mp(node[i].x,node[i].y)), ++i;
int ss=vv.size();
if (ss>k) FOR(j,k,ss-k) {
ans+=(C[j][k]*C[ss-j][k]*(query(vv[j].first-)-query(vv[j-].first)));
}
FO(j,,ss) {
int fi=vv[j].first;
add(fi,-*cal(now[fi],k)*cal(col[fi]-now[fi],k));
++now[fi];
add(fi,cal(now[fi],k)*cal(col[fi]-now[fi],k));
}
}
printf("%d\n",ans&);
return ;
}