题目:https://vjudge.net/contest/307753#problem/E
题意:给你一颗树,树上每个点都有个权值,现在问你是否存在 一条路径的乘积 mod 1e6+3 等于 k的路径,如果有找到字典序最小的方案
思路,树上路径~点分治 我们能知道每条路径的值,现在我们可以转化的问题是,怎么找一条路径等于K,和两条路径的乘积等于K, 首先第一种很明显就是判断相不相等即可,第二种的话,我们知道所有路径,我们怎么找到O(n)找到两个呢,我们用个数组存下所有是否出现过,然后,其实就是一个简单的小学问题,我们枚举每个距离的时候相当于 x,y,z已经知道 x,z了,式子是x*y=z,我们就只要判断z/x是否在标记数组中出现过即可,又因为这个有mod ,所以我们只能去乘z的逆元,这个时间卡的有点紧,我加了输入挂,和预处理逆元,map标记都不能用,只能用普通标记数组。
然后还有一个问题,你是否能和之前那样直接求出来所有的距离,答案是否定的,因为你直接去遍历数组标记,数组中的路径还含有两个都是同一子树的情况,这种时候是不能加入标记数组的,但是怎么避免呢,这里用到一个巧妙地方法,我们直接在计算所有路径到重心的距离的时候去更新答案,因为我们只有得到一个子树所有答案的时候才会存入标记数组,这样就避免一个子树的路径发生冲突的情况。最后我们再清空掉我们当前重心存入的答案。
还有更新答案的时候要注意的是,我们前面子树都保存的是点到重心的路径值,这里我们就不能也用点到重心的值了,因为就会多乘了一个重心节点的值,看下图
上面就是两条红色路径相乘就是两个路径合并起来了,主要还是因为这是点权,覆盖路径上所有点的点
#pragma comment(linker,"/STACK:102400000,102400000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#define maxn 1000005
#define mod 1000003
#define MAX 0x3f3f3f
using namespace std;
typedef long long ll;
struct edge{
int to,next;
}e1[*maxn];
ll da;
ll flag[maxn];
//vector<ll> mp[maxn];//存下图
bool vis[maxn];//标记曾经使用过的重心
ll maxsize[maxn],dis[maxn],d[maxn],last[maxn];//maxsize 当前节点的最大子树
ll siz[maxn],e[maxn],e2[maxn],id[maxn],wd[maxn],inv[maxn];// dis 到重心的距离 d 出现过的距离
ll n,m,rt,sum,qe,qe2,ans1,ans2,cnt; // siz 当前节点的子树个数 e 出现的距离 rt代表当前重心
inline ll read()
{
ll x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x;
}
void insert(int u,int v)
{
e1[++cnt].to=v;e1[cnt].next=last[u];last[u]=cnt;
e1[++cnt].to=u;e1[cnt].next=last[v];last[v]=cnt;
}
void find(ll x,ll f){//找出重心
siz[x]=;
maxsize[x]=;
for(int i=last[x];i;i=e1[i].next){
ll q=e1[i].to;
if(q==f||vis[q]) continue;//vis数组标记曾经使用过的重心
find(q,x);
siz[x]+=siz[q];
maxsize[x]=max(maxsize[x],siz[q]);
}
maxsize[x]=max(maxsize[x],sum-siz[x]);//节点总数减去当前的子树数=以当前节点为根的父亲点子树数
if(maxsize[x]<maxsize[rt]){
rt=x;
}
}
void query(ll x,ll y){
if(x>y) swap(x,y);
if(x<ans1||(x==ans1&&y<ans2)){
ans1=x;
ans2=y;
}
}
void get_dis(ll x,ll f,ll len,ll root){
ll t=len%mod;
if(t==m){//判断当前路径是否直接等于m
query(root,x);
}
t=t*inv[wd[root]]%mod;//除去重心到子树那段距离,原因就是上述图
ll t1=inv[t]*m%mod;
e[++qe]=len%mod;
e2[++qe2]=len%mod;//后面清空标记
id[qe]=x;
if(flag[t1]){//看是否另一条路径存在
query(flag[t1],x);
}
for(int i=last[x];i;i=e1[i].next){
ll q=e1[i].to;
if(q==f||vis[q]) continue;
// dis[q]=(dis[x]*len)%mod;
get_dis(q,x,(len*wd[q])%mod,root);
}
}
void divide(ll x){
//solve(x,wd[x]);
qe2=;
vis[x]=;
for(int i=last[x];i;i=e1[i].next){
ll q=e1[i].to;
qe=;
get_dis(q,x,wd[x]%mod*wd[q]%mod,x);
for(int i=;i<=qe;i++){//记录当前的子树所有的距离
if(flag[e[i]]==) flag[e[i]]=id[i];
else flag[e[i]]=min(flag[e[i]],id[i]);
}
}
for(int i=;i<=qe2;i++){//清空标记
flag[e2[i]]=;
}
for(int i=last[x];i;i=e1[i].next){
ll q=e1[i].to;
if(vis[q]) continue;
sum=siz[q];
rt=;
maxsize[rt]=MAX;
find(q,x);
divide(rt);
}
}
void init(){
for(int i=;i<=n;i++) last[i]=;
for(int i=;i<=n;i++) vis[i]=;
for(int i=;i<=n;i++) flag[i]=;
}
void pre(){
cnt=;
inv[] = inv[] = ;
for (ll i = ; i < maxn; i++)
inv[i] = (mod - mod / i)*inv[mod%i] % mod;
}
int main(){
pre();
while(scanf("%lld%lld",&n,&m)!=EOF)
{
//if(n==0&&m==0) break;
ll a,b,c;
init();
ans1=MAX;ans2=MAX;
for(int i=;i<=n;i++) wd[i]=read();
for(int i=;i<n;i++)
{
int u=read(),v=read();
insert(u,v);
}
sum=n;//当前节点数
rt=;
maxsize[]=MAX;//置初值
find(,);
divide(rt);
if(ans1!=MAX&&ans2!=MAX) printf("%lld %lld\n",ans1,ans2);
else printf("No solution\n");
}
}