hdu 5909 Tree Cutting

题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数


\(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数

转移类似背包,可以用fwt加速

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = (1<<10) + 5, P = 1e9+7, inv2 = (P+1)/2;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} int n, m, val[N];
struct edge{int v, ne;} e[N<<1];
int cnt, h[N];
inline void ins(int u, int v) {
e[++cnt] = (edge){v, h[u]}; h[u] = cnt;
e[++cnt] = (edge){u, h[v]}; h[v] = cnt;
}
int f[N][N], ans[N]; void fwt(int *a, int n, int flag) {
for(int l=2; l<=n; l<<=1) {
int m = l>>1;
for(int *p = a; p != a+n; p += l)
for(int k=0; k<m; k++) {
int x = p[k], y = p[k+m];
if(flag == 1) p[k] = (x + y) %P, p[k+m] = (x - y + P) %P;
else p[k] = (ll) (x + y) * inv2 %P, p[k+m] = (ll) (x - y + P) * inv2 %P;
}
}
} int t[N];
void dp(int u, int fa) {
int *a = f[u]; a[val[u]] = 1; //fwt(a, m, 1);
for(int i=h[u];i;i=e[i].ne) {
int v = e[i].v;
if(v == fa) continue;
dp(v, u); int *b = f[v];
for(int i=0; i<m; i++) t[i] = a[i];
fwt(t, m, 1); fwt(b, m, 1);
for(int i=0; i<m; i++) t[i] = (ll) t[i] * b[i] %P;
fwt(t, m, -1);
for(int i=0; i<m; i++) a[i] = (a[i] + t[i]) %P;
}
for(int i=0; i<m; i++) ans[i] = (ans[i] + a[i]) %P;
} int main() {
freopen("in", "r", stdin);
int T = read();
while(T--) {
n = read(); m = read();
for(int i=1; i<=n; i++) val[i] = read();
cnt = 0; memset(h, 0, sizeof(h));
for(int i=1; i<n; i++) ins(read(), read());
memset(f, 0, sizeof(f)); memset(ans, 0, sizeof(ans));
dp(1, 0);
for(int i=0; i<m; i++) printf("%d%c", ans[i], i==m-1 ? '\n' : ' ');
}
}
04-17 03:56