import numpy as np
import matplotlib.pyplot as plt from sklearn import neighbors, datasets
from sklearn.model_selection import train_test_split def load_classification_data():
# 使用 scikit-learn 自带的手写识别数据集 Digit Dataset
digits=datasets.load_digits()
X_train=digits.data
y_train=digits.target
# 进行分层采样拆分,测试集大小占 1/4
return train_test_split(X_train, y_train,test_size=0.25,random_state=0,stratify=y_train) #KNN分类KNeighborsClassifier模型
def test_KNeighborsClassifier(*data):
X_train,X_test,y_train,y_test=data
clf=neighbors.KNeighborsClassifier()
clf.fit(X_train,y_train)
print("Training Score:%f"%clf.score(X_train,y_train))
print("Testing Score:%f"%clf.score(X_test,y_test)) # 获取分类模型的数据集
X_train,X_test,y_train,y_test=load_classification_data()
# 调用 test_KNeighborsClassifier
test_KNeighborsClassifier(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型-LMLPHP

def test_KNeighborsClassifier_k_w(*data):
'''
测试 KNeighborsClassifier 中 n_neighbors 和 weights 参数的影响
'''
X_train,X_test,y_train,y_test=data
Ks=np.linspace(1,y_train.size,num=100,endpoint=False,dtype='int')
weights=['uniform','distance'] fig=plt.figure()
ax=fig.add_subplot(1,1,1)
### 绘制不同 weights 下, 预测得分随 n_neighbors 的曲线
for weight in weights:
training_scores=[]
testing_scores=[]
for K in Ks:
clf=neighbors.KNeighborsClassifier(weights=weight,n_neighbors=K)
clf.fit(X_train,y_train)
testing_scores.append(clf.score(X_test,y_test))
training_scores.append(clf.score(X_train,y_train))
ax.plot(Ks,testing_scores,label="testing score:weight=%s"%weight)
ax.plot(Ks,training_scores,label="training score:weight=%s"%weight)
ax.legend(loc='best')
ax.set_xlabel("K")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.set_title("KNeighborsClassifier")
plt.show() # 获取分类模型的数据集
X_train,X_test,y_train,y_test=load_classification_data()
# 调用 test_KNeighborsClassifier_k_w
test_KNeighborsClassifier_k_w(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型-LMLPHP

def test_KNeighborsClassifier_k_p(*data):
'''
测试 KNeighborsClassifier 中 n_neighbors 和 p 参数的影响
'''
X_train,X_test,y_train,y_test=data
Ks=np.linspace(1,y_train.size,endpoint=False,dtype='int')
Ps=[1,2,10] fig=plt.figure()
ax=fig.add_subplot(1,1,1)
### 绘制不同 p 下, 预测得分随 n_neighbors 的曲线
for P in Ps:
training_scores=[]
testing_scores=[]
for K in Ks:
clf=neighbors.KNeighborsClassifier(p=P,n_neighbors=K)
clf.fit(X_train,y_train)
testing_scores.append(clf.score(X_test,y_test))
training_scores.append(clf.score(X_train,y_train))
ax.plot(Ks,testing_scores,label="testing score:p=%d"%P)
ax.plot(Ks,training_scores,label="training score:p=%d"%P)
ax.legend(loc='best')
ax.set_xlabel("K")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.set_title("KNeighborsClassifier")
plt.show() # 获取分类模型的数据集
X_train,X_test,y_train,y_test=load_classification_data()
# 调用 test_KNeighborsClassifier_k_p
test_KNeighborsClassifier_k_p(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型-LMLPHP

05-08 08:07