#1394 : 网络流四·最小路径覆盖
时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
国庆期间正是旅游和游玩的高峰期。
小Hi和小Ho的学习小组为了研究课题,决定趁此机会派出若干个调查团去沿途查看一下H市内各个景点的游客情况。
H市一共有N个旅游景点(编号1..N),由M条单向游览路线连接。在一个景点游览完后,可以顺着游览线路前往下一个景点。
为了避免游客重复游览同一个景点,游览线路保证是没有环路的。
每一个调查团可以从任意一个景点出发,沿着计划好的游览线路依次调查,到达终点后再返回。每个景点只会有一个调查团经过,不会重复调查。
举个例子:
上图中一共派出了3个调查团:
1. 蓝色:调查景点;2
2. 橙色:调查景点;1->3->4->6
3. 绿色:调查景点;5->7
当然对于这个图还有其他的规划方式,但是最少也需要3个调查团。
由于小组内的人数有限,所以大家希望调查团的数量尽可能少,同时也要将所有的景点都进行调查。
当然,如何规划调查团线路的任务落到了小Hi和小Ho的头上。
输入
第1行:2个整数N,M。1≤N≤500,0≤M≤20,000。
第2..M+1行:2个数字u,v,表示一条有向边(u,v)。保证不会出现重复的边,且不存在环。
输出
第1行:1个整数,表示最少需要的调查团数量。
- 样例输入
7 7
1 2
1 3
2 4
3 4
4 5
4 6
5 7- 样例输出
3
分析
最小路径覆盖=N-最大匹配数
code
#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
const int N = ;
const int INF = 1e9;
struct Edge{
int to,nxt,c;
Edge() {}
Edge(int x,int y,int z) {to = x,c = y,nxt = z;}
}e[];
int q[],L,R,S,T,tot = ;
int dis[N],cur[N],head[N]; inline char nc() {
static char buf[],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2) ? EOF :*p1++;
}
inline int read() {
int x = ,f = ;char ch=nc();
for (; ch<''||ch>''; ch=nc()) if(ch=='-')f=-;
for (; ch>=''&&ch<=''; ch=nc()) x=x*+ch-'';
return x*f;
}
void add_edge(int u,int v,int c) {
e[++tot] = Edge(v,c,head[u]);head[u] = tot;
e[++tot] = Edge(u,,head[v]);head[v] = tot;
}
bool bfs() {
for (int i=; i<=T; ++i) cur[i] = head[i],dis[i] = -;
L = ,R = ;
q[++R] = S;dis[S] = ;
while (L <= R) {
int u = q[L++];
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].to;
if (dis[v] == - && e[i].c > ) {
dis[v] = dis[u]+;q[++R] = v;
if (v==T) return true;
}
}
}
return false;
}
int dfs(int u,int flow) {
if (u==T) return flow;
int used = ;
for (int &i=cur[u]; i; i=e[i].nxt) {
int v = e[i].to;
if (dis[v] == dis[u] + && e[i].c > ) {
int tmp = dfs(v,min(flow-used,e[i].c));
if (tmp > ) {
e[i].c -= tmp;e[i^].c += tmp;
used += tmp;
if (used == flow) break;
}
}
}
if (used != flow) dis[u] = -;
return used;
}
int dinic() {
int ret = ;
while (bfs()) ret += dfs(S,INF);
return ret;
} int main() {
int n = read(),m = read();
S = n + n + ,T = n + n + ;
for (int i=; i<=n; ++i) add_edge(S,i,),add_edge(i+n,T,);
for (int i=; i<=m; ++i) {
int u = read(),v = read();
add_edge(u,v+n,);
}
int ans = dinic();
printf("%d",n-ans);
return ;
}