在Stitching模块中以及原始论文《Automatic Panoramic Image Stitching using Invariant Features》3.2中,都有“根据已经匹配好的特征对,判断哪些图片是属于序列,那些图片是不属于序列”的这一步操作。
论文解释为:
 Stitching模块中leaveBiggestComponent初步研究-LMLPHP

Stitching模块中leaveBiggestComponent初步研究-LMLPHP

对应的函数为:
std::vector<int> leaveBiggestComponent(std::vector<ImageFeatures> &features,  std::vector<MatchesInfo> &pairwise_matches,float conf_threshold)
{
    const int num_images = static_cast<int>(features.size());
    DisjointSets comps(num_images);
    for (int i = 0; i < num_images; ++i)
    {
        for (int j = 0; j < num_images; ++j)
        {
            if (pairwise_matches[i*num_images + j].confidence < conf_threshold)
                continue;
            int comp1 = comps.findSetByElem(i);
            int comp2 = comps.findSetByElem(j);
            if (comp1 != comp2)
                comps.mergeSets(comp1, comp2);
        }
    }
    int max_comp = static_cast<int>(std::max_element(comps.size.begin(),comps.size.end()) - comps.size.begin());
    std::vector<int> indices;
    std::vector<int> indices_removed;
    for (int i = 0; i < num_images; ++i)
        if (comps.findSetByElem(i) == max_comp)
            indices.push_back(i);
        else
            indices_removed.push_back(i);
    std::vector<ImageFeatures> features_subset;
    std::vector<MatchesInfo> pairwise_matches_subset;
    for (size_t i = 0; i < indices.size(); ++i)
    {
        features_subset.push_back(features[indices[i]]);
        for (size_t j = 0; j < indices.size(); ++j)
        {
            pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]);
            pairwise_matches_subset.back().src_img_idx = static_cast<int>(i);
            pairwise_matches_subset.back().dst_img_idx = static_cast<int>(j);
        }
    }
    if (static_cast<int>(features_subset.size()) == num_images)
        return indices;
    LOG("Removed some images, because can't match them or there are too similar images: (");
    LOG(indices_removed[0] + 1);
    for (size_t i = 1; i < indices_removed.size(); ++i)
        LOG(", " << indices_removed[i]+1);
    LOGLN(").");
    LOGLN("Try to decrease the match confidence threshold and/or check if you're stitching duplicates.");
    features = features_subset;
    pairwise_matches = pairwise_matches_subset;
    return indices;
}

leaveBiggestComponent的主要目的可以描述为“寻找所有配对中肯定属于一幅全景图像的图片”,主要通过的方法是“并查集”
那什么是“并查集”了?举个简单应用的例子。现在社交网站这么流行,假设现在想知道两个人之间是否存在间接好友关系(A和B为好友,B和C为好友,A和C为间接好友),有什么好方法呢?并查集就是用于这类查询问题的有效数据结构,正如其名(disjoint set),并查集本质上是一个集合,集合的元素为树,因此并查集实际上表示了一个森林(disjoint-set forests)。它的特点是每棵树中的成员都可由根结点所代表,这样要知道两个结点是否属于集合的同一元素,只要看它们是否有同一“代表”。
为此,搜集资料,编写代码
#include "stdafx.h"
#include "opencv2/opencv_modules.hpp"
#include <opencv2/core/utility.hpp>
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/timelapsers.hpp"
#include "opencv2/stitching/detail/camera.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/motion_estimators.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
#include "opencv2/stitching/warpers.hpp"
#define  conf_threshold 90  
#define  num_images 10  
using namespace std;
using namespace cv;
using namespace cv::detail;
void main()  
{  
    int max_comp = 0;  
    int max_size = 0;  
    vector<int> confident(num_images*num_images);  
    DisjointSets comps(num_images);  
    //使用随机数模拟多幅图像中每个图像相互匹配的置信度(0-100)  
    //另外1与2的匹配置信度和2与1的置信度我们默认相同(实际中是不相同的)  
    srand((unsigned)time(NULL));  
    for (int i  = 0;i<num_images;i++)  
    {  
        cout<<endl;  
        for (int j = 0;j<num_images;j++)  
        {  
            if (!confident[i*num_images+j])  
            {  
                confident[i*num_images+j] = rand()%100;  
                confident[j*num_images+i] = confident[i*num_images+j];  
            }  
            if (i == j)  
            {  
                confident[i*num_images+j] = 100;  
            }  
            cout<<"   "<<confident[i*num_images+j];  
        }  
    }  
    //根据两幅图匹配置信度是否大于conf_threshold来决定是否属于一个全景集合  
    for (int i = 0; i < num_images; ++i)  
    {  
        for (int j = 0; j < num_images; ++j)  
        {  
            if (confident[i*num_images + j] < conf_threshold)  
                continue;  
            int comp1 = comps.findSetByElem(i);  
            int comp2 = comps.findSetByElem(j);  
            if (comp1 != comp2)  
                comps.mergeSets(comp1, comp2);  
        }  
    }  
    //找出包含图片最多的全景集合  
    for (int i = 0;i< num_images;i++)  
    {  
        if (i == 0)  
        {  
            max_comp = 0;  
            max_size = comps.size[i];  
        }  
        else if(comps.size[i]>max_size)  
        {  
            max_comp = i;  
            max_size = comps.size[i];  
        }  
    }  
    //将该集合中的元素打印出来  
    cout<<endl<<"images in the max_comp:"<<endl;  
    int j = 0;  
    for (int i = 0;i<num_images;i++)  
    {  
        if (comps.findSetByElem(i) == max_comp)  
        {  
            cout<<++j<<":  "<< i<<endl;  
        }  
    }  
    while(1);  
}  

其中相关函数解释:
 comps.mergeSets(comp1, comp2); 
是将comp1和comp2合并起来。
最后得到的,就是在目前情况下,最大可能的符合条件的序列组合。

解析:

这里的理解可能有一些困难,关键是要把握在运算前有什么,运算后有什么?
在运算前,我们得到的是一个矩阵,那就是N*N的图片序列中,每一个图片和其他N-1个图片之间的特征匹配关系,也包括确信值
Stitching模块中leaveBiggestComponent初步研究-LMLPHP
运算之后,需要获得的是在这些所有的关系中,所有对都符合条件的,但是相互之间不想交的对的集合。并且把最大的那个打印出来。

 
05-11 21:47