题目描述
小 B
最近迷上了华容道,可是他总是要花很长的时间才能完成一次。于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时间。
小 B
玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的:
- 在一个 $ n \times m $ 棋盘上有 $ n \times m $ 个格子,其中有且只有一个格子是空白的,其余 $ n \times m -1 $ 个格子上每个格子上有一个棋子,每个棋子的大小都是 $ 1 \times 1 $ 的;
- 有些棋子是固定的,有些棋子则是可以移动的;
- 任何与空白的格子相邻(有公共的边)的格子上的棋子都可以移动到空白格子上。
游戏的目的是把某个指定位置可以活动的棋子移动到目标位置。
给定一个棋盘,游戏可以玩 $ q $ 次,当然,每次棋盘上固定的格子是不会变的, 但是棋盘上空白的格子的初始位置、 指定的可移动的棋子的初始位置和目标位置却可能不同。第 i 次玩的时候, 空白的格子在第 $ EX_i $ 行第$ EY_i $ 列,指定的可移动棋子的初始位置为第 $ SX_i $ 第 $ SY_i $ 列,目标位置为第 $ TX_i $ 行第 $ TY_i $ 列。
假设小 B
每秒钟能进行一次移动棋子的操作,而其他操作的时间都可以忽略不计。请你告诉小 B
每一次游戏所需要的最少时间,或者告诉他不可能完成游戏。
输入输出格式
输入格式:
第一行有 33个整数,每两个整数之间用一个空格隔开,依次表示n,m,qn,m,q;
接下来的 nn 行描述一个n \times mn×m 的棋盘,每行有mm个整数,每两个整数之间用一个空格隔开,每个整数描述棋盘上一个格子的状态,00 表示该格子上的棋子是固定的,11 表示该格子上的棋子可以移动或者该格子是空白的。
接下来的 qq 行,每行包含 66 个整数依次是 EX_i,EY_i,SX_i,SY_i,TX_i,TY_iEXi,EYi,SXi,SYi,TXi,TYi,每两个整数之间用一个空格隔开,表示每次游戏空白格子的位置,指定棋子的初始位置和目标位置。
输出格式:
共qq 行,每行包含 11 个整数,表示每次游戏所需要的最少时间,如果某次游戏无法完成目标则输出\(−1\)。
输入输出样例
输入样例#1:
3 4 2
0 1 1 1
0 1 1 0
0 1 0 0
3 2 1 2 2 2
1 2 2 2 3 2
输出样例#1:
2
-1
说明
【输入输出样例说明】
棋盘上划叉的格子是固定的,红色格子是目标位置,圆圈表示棋子,其中绿色圆圈表示目标棋子。
- 第一次游戏,空白格子的初始位置是 (3,2)(3,2)(图中空白所示),游戏的目标是将初始位置在(1, 2)(1,2)上的棋子(图中绿色圆圈所代表的棋子)移动到目标位置(2, 2)(2,2)(图中红色的格子)上。
移动过程如下:
第二次游戏,空白格子的初始位置是(1, 2)(1,2)(图中空白所示),游戏的目标是将初始位置在(2, 2)(2,2)上的棋子(图中绿色圆圈所示)移动到目标位置 (3, 2)(3,2)上。
要将指定块移入目标位置,必须先将空白块移入目标位置,空白块要移动到目标位置,必然是从位置(2,2)(2,2)上与当前图中目标位置上的棋子交换位置,之后能与空白块交换位置的只有当前图中目标位置上的那个棋子,因此目标棋子永远无法走到它的目标位置, 游戏无法完成。
【数据范围】
对于\(30\%\)的数据,\(1 ≤ n, m ≤ 10,q = 1\);
对于 \(60\%\)的数据,\(1 ≤ n, m ≤ 30,q ≤ 10\);
对于 \(100\%\)的数据,\(1 ≤ n, m ≤ 30,q ≤ 500\)。
炸一看两个点感觉无从下手(其实一开始我也蒙了):
但其实是起始点要走到终点就必须带着空格子走(因为没有空格子无法移动)