【问题描述】

小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次。于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时间。

小 B 玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的:

  1. 在一个 n*m 棋盘上有 n*m 个格子,其中有且只有一个格子是空白的,其余 n*m-1个格子上每个格子上有一个棋子,每个棋子的大小都是 1*1 的;

  2. 有些棋子是固定的,有些棋子则是可以移动的;

  3. 任何与空白的格子相邻(有公共的边)的格子上的棋子都可以移动到空白格子上。

游戏的目的是把某个指定位置可以活动的棋子移动到目标位置。

给定一个棋盘,游戏可以玩 q 次,当然,每次棋盘上固定的格子是不会变的, 但是棋盘上空白的格子的初始位置、 指定的可移动的棋子的初始位置和目标位置却可能不同。第 i 次

玩的时候, 空白的格子在第 EXi 行第 EYi 列,指定的可移动棋子的初始位置为第 SXi 行第 SYi列,目标位置为第 TXi 行第 TYi 列。

假设小 B 每秒钟能进行一次移动棋子的操作,而其他操作的时间都可以忽略不计。请你告诉小 B 每一次游戏所需要的最少时间,或者告诉他不可能完成游戏。

输入输出格式

输入格式:

输入文件为 puzzle.in。

第一行有 3 个整数,每两个整数之间用一个空格隔开,依次表示 n、m 和 q;

接下来的 n 行描述一个 n*m 的棋盘,每行有 m 个整数,每两个整数之间用一个空格隔开,每个整数描述棋盘上一个格子的状态,0 表示该格子上的棋子是固定的,1 表示该格子上的棋子可以移动或者该格子是空白的。接下来的 q 行,每行包含 6 个整数依次是 EXi、EYi、SXi、SYi、TXi、TYi,每两个整数之间用一个空格隔开,表示每次游戏空白格子的位置,指定棋子的初始位置和目标位置。

输出格式:

输出文件名为 puzzle.out。

输出有 q 行,每行包含 1 个整数,表示每次游戏所需要的最少时间,如果某次游戏无法完成目标则输出−1。

输入输出样例

输入样例#1: 

3 4 2
0 1 1 1
0 1 1 0
0 1 0 0
3 2 1 2 2 2
1 2 2 2 3 2
输出样例#1: 

2
-1

说明

【输入输出样例说明】

棋盘上划叉的格子是固定的,红色格子是目标位置,圆圈表示棋子,其中绿色圆圈表示目标棋子。

  1. 第一次游戏,空白格子的初始位置是 (3, 2)(图中空白所示),游戏的目标是将初始位置在(1, 2)上的棋子(图中绿色圆圈所代表的棋子)移动到目标位置(2, 2)(图中红色的格子)上。

移动过程如下:

P1979 [NOIP]华容道-LMLPHP

  1. 第二次游戏,空白格子的初始位置是(1, 2)(图中空白所示),游戏的目标是将初始位置在(2, 2)上的棋子(图中绿色圆圈所示)移动到目标位置 (3, 2)上。

P1979 [NOIP]华容道-LMLPHP

要将指定块移入目标位置,必须先将空白块移入目标位置,空白块要移动到目标位置,必然是从位置(2, 2)上与当前图中目标位置上的棋子交换位置,之后能与空白块交换位置的只有当前图中目标位置上的那个棋子,因此目标棋子永远无法走到它的目标位置, 游戏无

法完成。

【数据范围】

对于 30%的数据,1 ≤ n, m ≤ 10,q = 1;

对于 60%的数据,1 ≤ n, m ≤ 30,q ≤ 10;

对于 100%的数据,1 ≤ n, m ≤ 30,q ≤ 500。

题解:

  发现每个点需要移动时空格都需要在其四周,所以可以预处理出每个点到其四周的最少的步数,

  然后每次输入时,处理处空格到其四周,现将空格移到起始点周围,然后每次交换位置,再移动,

  这时就可以直接根据预处理的图进行最短路就ok了。

 #include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iostream>
#include<queue>
#define fzy pair<int,int>
#define inf 100000007
using namespace std; const int lx[]={-,,,};
const int ly[]={,,-,};//上为0,下为1,左为2,右为3 int n,m,q;
int d[];bool ins[];
int p[][],dis[][];
int cnt,head[],next[],rea[],val[]; void add(int u,int v,int fee)
{
next[++cnt]=head[u];
head[u]=cnt;
rea[cnt]=v;
val[cnt]=fee;
}
void bfs(int sx,int sy,int bx,int by,int flag)//sx,sy表示空格位置,bx,by表示目标棋子位置。
{
queue<fzy>q;
while(!q.empty()) q.pop();
q.push(make_pair(sx,sy));
memset(dis,,sizeof(dis));//用来处理不经过目标点到达其身边。
dis[sx][sy]=;
while(!q.empty())
{
int nx=q.front().first,ny=q.front().second;q.pop();
for (int i=;i<;i++)
{
int tx=nx+lx[i],ty=ny+ly[i];
if (p[tx][ty]&&!dis[tx][ty]&&(tx!=bx||ty!=by))//可以走,未到过,不是目标点。
{
dis[tx][ty]=dis[nx][ny]+;
q.push(make_pair(tx,ty));
}
}
}
if (flag>) return;
for (int i=;i<;i++)
{
int tx=bx+lx[i],ty=by+ly[i];
if ((tx!=sx||ty!=sy)&&dis[tx][ty]) add(bx*+by*+flag,bx*+by*+i,dis[tx][ty]-);//表示不经过目标点到达其身边。
}
add(bx*+by*+flag,sx*+sy*+flag^,);//表示直接交换。
}
void solve_spfa(int bx,int by)
{
queue<int>q;
while(!q.empty()) q.pop();
for (int i=;i<;i++)
d[i]=inf,ins[i]=;
for (int i=;i<;i++)
{
int tx=bx+lx[i],ty=by+ly[i],tn=bx*+by*+i;
if (dis[tx][ty])
{
d[tn]=dis[tx][ty]-;
q.push(tn);
ins[tn]=;
}
}
while(!q.empty())
{
int now=q.front();q.pop();
for (int i=head[now];i!=-;i=next[i])
{
int v=rea[i],fee=val[i];
if(d[now]+fee<d[v])
{
d[v]=d[now]+fee;
if (!ins[v])
{
ins[v]=;
q.push(v);
}
}
}
ins[now]=;
}
}
int main()
{
scanf("%d%d%d",&n,&m,&q);
memset(head,-,sizeof(head));
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
scanf("%d",&p[i][j]);
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
{
if (!p[i][j]) continue;
if (p[i-][j]) bfs(i-,j,i,j,);
if (p[i+][j]) bfs(i+,j,i,j,);
if (p[i][j-]) bfs(i,j-,i,j,);
if (p[i][j+]) bfs(i,j+,i,j,);
}
while(q--)
{
int sx,sy,bx,by,mx,my;
scanf("%d%d%d%d%d%d",&sx,&sy,&bx,&by,&mx,&my);
if (bx==mx&&by==my)
{
puts("");
continue;
}
bfs(sx,sy,bx,by,);
solve_spfa(bx,by);
int ans=inf;
for (int i=;i<;i++)
ans=min(ans,d[mx*+my*+i]);
if (ans<inf) printf("%d\n",ans);
else puts("-1");
}
}
05-11 17:56