from numpy import *

import time
starttime = time.time() def loadDataSet():
postingList = [['my', 'dog', 'has', 'flea',
'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him',
'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute',
'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless',
'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how',
'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food',
'stupid']]
classVec = [0, 1, 0, 1, 0, 1]
return postingList, classVec def createVocabList(dataSet): # dataSet = postingList
vocabSet = set([]) # vocabSet = set(dataSet)
for document in dataSet:
vocabSet = vocabSet | set(document) #
return list(vocabSet) # createVocabList = list(set(dataSet)) def setOfWords2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList) # [0, 0 , 0 ,0,..] len(vocabList) 0
for word in vocabList:
if word in inputSet:
returnVec[vocabList.index(word)] = 1 + 1.0
else:
returnVec[vocabList.index(word)] = 1.0
print "the word: %s is not in my Vocabulary!" % word
return returnVec def txt2trainxy(filename1, filename2):
import re
reg = re.compile(r'\W*') #
# step 1: loading data...
print "stet 1: loading data..."
from os import listdir
ld1 = listdir('email/' + filename1); ld2 = listdir('email/' + filename2)
filelist = ld1 + ld2
trainy = ((filename1 + '\t') * len(ld1) + (filename2 + '\t') * len(ld2)).split() trainx = []; fulltext = []; i = 0
for File in filelist:
if i < len(ld1):
fr = reg.split(open('email/' + filename1 + '/' + File).readlines()[0].lower())
else:
fr = reg.split(open('email/' + filename2 + '/' + File).readlines()[0].lower())
trainx.append([f for f in fr if len(f) > 2]) #
fulltext.extend([f for f in fr if len(f) > 2]) #
i += 1
fulltext = list(set(fulltext))
# set of words
trainxws = [[list(set(item)).count(strg) + 1.0 for strg in fulltext] for item in trainx]
# bag of words
trainxwb = [[item.count(strg) + 1.0 for strg in fulltext] for item in trainx] return trainxws, trainxwb, trainy, trainx, fulltext def testx2vec(testx, fulltext):
# set of words
testxws = [list(set(testx)).count(strg) + 1.0 for strg in fulltext] #
# bag of words
testxwb = [testx.count(strg) + 1.0 for strg in fulltext] #
for word in testx:
if word not in fulltext:
print "the word: %s is not in my fulltext!" % word
return testxws, testxwb def bayes(testx, trainx, trainy, fulltext):
print "---Getting Prob..."
s = set(trainy); l = len(trainy); r = len(trainx[0])
IDs = [[id for id in range(l) if trainy[id] == item] for item in s]
logproby = [log(array(trainy.count(item)) / float(l)) for item in s]
numbxv = [sum([trainx[id] for id in ids], 0) for ids in IDs]
numbx = [sum([trainx[id] for id in ids]) + 2.0 for ids in IDs] #
probx = [numbxv[i] / float(numbx[i]) for i in range(len(s))]
logprobx = [[log(p[i]) for i in range(r)] for p in probx]
print "---Printing Prob..."
#print probx
print [fulltext[i] for i in (-array(probx)).argsort()[:,: 5][0]] # argsort() small to big
print trainy[IDs[0][0]]
print [fulltext[i] for i in (-array(probx)).argsort()[:,: 5][1]]
print trainy[IDs[1][0]]
"""
print IDs
print numbxv
print logprobx
""" # step 4: showing the result...
print "---Showing the result..."
# set of words
sumlogpxws = sum(array(logprobx) * testx, 1)
sumlogpxyws = array(sumlogpxws) + array(logproby)
#print logprobx
print sumlogpxws
print sum(array(probx) * testx, 1)
bestyws = trainy[IDs[sumlogpxyws.argmax()][0]]
print "---From set of words: ", bestyws
"""
# bag of words
sumlogpxwb = sum(array(logprobx) * testxwb, 1)
sumlogpxywb = array(sumlogpxwb) + array(logproby)
bestywb = trainy[IDs[sumlogpxywb.argmax()][0]]
print "---From bag of words: ", bestywb
"""
return bestyws def main():
# step 1: loading data...
trainxws, trainxwb, trainy, trainx, fulltext = txt2trainxy('spam','ham')
print fulltext # step 2: training...
print "step 2: training..."
pass # step 3: testing...
print "step 3: testing..."
print "---Preparing testdata..."
import random
l = len(trainy)
testid = random.sample(range(l), 20)
testxxx = [trainxws[i] for i in testid]
testyyy = [trainy[i] for i in testid]
testtrainxws = [trainxws[i] for i in range(l) if i not in testid]
testtrainy = [trainy[i] for i in range(l) if i not in testid]
print "---Testing now..."
errorcount = 0; p = len(testid)
for i in range(p):
if bayes(testxxx[i], testtrainxws, testtrainy, fulltext) != testyyy[i]:
errorcount += 1
print errorcount
print p
print "---Errorrate is: ", (errorcount / float(p)) # step 4: showing the result
print "step 4: using..."
testx = ['love', 'my', 'dalmation']
print "the testx is: ", testx
print "---Changing testx into vector..."
testxws, testxwb = testx2vec(testx, fulltext)
#print testxws
bayes(testxws, testtrainxws, testtrainy, fulltext) main() """
trainx, trainy = loadDataSet()
fulltext = createVocabList(trainx)
print fulltext
print setOfWords2Vec(fulltext, trainx[0])
trainxws = []
for t in trainx:
trainxws.append(setOfWords2Vec(fulltext, t))
testEntry1 = ['love', 'my', 'dalmation']
testEntry2 = ['stupid', 'garbage']
bayes(testEntry1, trainxws, trainy, fulltext) """
05-04 03:25