# -*- coding: utf-8 -*-
# ---------------------------------------------------------------------------
# AdaBoost.py
# Created on: 2014-06-12 09:49:56.00000
# Description:
# --------------------------------------------------------------------------- import sys
import math
import numpy as np breakValues = (2.5, 5.5, 8.5)
X = np.array([0,1,2,3,4,5,6,7,8,9])
Y = np.array([1,1,1,-1,-1,-1,1,1,1,-1])
W1 = np.array([0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1]) def Classifier25(x):
if x <= 2.5:
return 1
else:
return -1 def Classifier55(x):
if x >= 5.5:
return 1
else:
return -1 def Classifier85(x):
if x <= 8.5:
return 1
else:
return -1 def ClassifyArray(XArray, Classifier):
YY = []
for x in XArray:
YY.append(Classifier(x))
print(YY)
return YY
def ErrorSum(YY):
i = 0
errorValue = 0;
for y in YY:
if y != Y[i]:
errorValue += W1[i]
i = i+1
return errorValue def ErrorAllSum(ExpressArray):
i = 0
errorValue = 0;
for x in X:
value = 0
for express in ExpressArray:
value += express[0] * express[1](x)
if value > 0:
value = 1
else:
value = -1
if value != Y[i]:
errorValue += 0.1
i = i+1
return errorValue def SelectClassifierFunction(XArray):
ClassifierArray = [Classifier25, Classifier55, Classifier85]
errArray = []
value = float('NaN')
errMin = float('Inf')
for classifier in ClassifierArray:
#计算分类的结果值
YY = ClassifyArray(XArray, classifier)
#计算分类的错误率
errorValue = ErrorSum(YY)
errArray.append(errorValue)
if errorValue < errMin:
errMin = errorValue
value = classifier
print(errArray)
print(value.__name__)
return value print(W1) '''
print('--------------------------------')
classifier = SelectClassifierFunction(X)
#计算分类的结果值
G = ClassifyArray(X, classifier)
#计算分类的错误率
e = ErrorSum(G)
a = 0.5 * math.log((1-e)/e)
a = round(a, 4)
print(a)
W2 = W1*np.exp(-a*Y*np.array(G))
Zm = np.sum(W2)
#Zm = round(Zm, 4)
print(Zm)
W1 = W2 / Zm
print(W1) print('--------------------------------') W1 = np.array([0.0715,0.0715,0.0715,0.0715,0.0715,0.0715,0.1666,0.1666,0.1666,0.07151])
classifier = SelectClassifierFunction(X)
#计算分类的结果值
G = ClassifyArray(X, classifier)
#计算分类的错误率
e = ErrorSum(G)
a = 0.5 * math.log((1-e)/e)
a = round(a, 4)
print(a)
W2 = W1*np.exp(-a*Y*np.array(G))
Zm = np.sum(W2)
#Zm = round(Zm, 4)
print(Zm)
W1 = W2 / Zm
print(W1) print('--------------------------------') W1 = np.array([0.0455, 0.0455, 0.0455, 0.1667, 0.1667, 0.01667, 0.1060, 0.1060, 0.1060, 0.0455])
classifier = SelectClassifierFunction(X)
#计算分类的结果值
G = ClassifyArray(X, classifier)
#计算分类的错误率
e = ErrorSum(G)
a = 0.5 * math.log((1-e)/e)
a = round(a, 4)
print(a)
W2 = W1*np.exp(-a*Y*np.array(G))
Zm = np.sum(W2)
#Zm = round(Zm, 4)
print(Zm)
W1 = W2 / Zm
print(W1)
''' errorAll = 100
ExpressArray = []
while errorAll > 0.1:
print('--------------------------------')
classifier = SelectClassifierFunction(X)
#计算分类的结果值
G = ClassifyArray(X, classifier)
#计算分类的错误率
e = ErrorSum(G)
a = 0.5 * math.log((1-e)/e)
a = round(a, 4)
print('a:' + str(a))
W2 = W1*np.exp(-a*Y*np.array(G))
Zm = np.sum(W2)
#Zm = round(Zm, 4)
print(Zm)
print('Zm:' + str(Zm))
W1 = W2 / Zm
print('W1:' + str(W1))
ExpressArray.append([a,classifier])
errorAll = ErrorAllSum(ExpressArray)
print('errorAll:' + str(errorAll)) expressString = 'G(x) = sign( '
i = 0
for express in ExpressArray:
if i > 0:
expressString += ' + '
expressString += str(express[0]) + ' * ' + express[1].__name__+'(x)'
i += 1 expressString += ' )'
print('--------------------------------')
print('分类函数为:\n' + expressString)
print('--------------------------------')