题解
大意是给出一张图,然后建一张新图,新图的点标号是(a,b)
如果a和c有一条边,b和d有一条边,那么(a,b)和(c,d)之间有一条边
我们把这道题当成这道题来做,给出两张图,如果第一张图有边(a,c),第二张图有边(b,d),那么第三张图上有边(a,b)(c,d)
如果某张图只有一个点,那么答案就是另一张图的点数
然后我们发现对于某两个点对(a,c),(b,d)如果有一条长度为l的路径,那么(a,b)(c,d)一定可以联通
但是我们发现我们经过的路径可以不是简单路径,也就是我们反复走一条边,那么我们只和路径长度的奇偶性有关了
很容易想到二分图,如果两张图都是二分图且联通的话,那么第三张图联通分量的个数是2
分别是\(S_a * T_b \cup T_a * S_b\)和\(S_a * S_b \cup T_a * T_b\)
而两张图都是非二分图且联通的话,任意路径的奇偶性都可以互相转化,所以整张图就是一个联通块
那么我们求出两个图的孤立点个数\(i_A,i_B\),两个图的非二分图联通块个数\(p_A,p_B\),两个图的二分图联通块个数\(q_A,q_B\)
答案就是
\(i_Ai_B + i_A(N_B - i_B) + i_B(N_A - i_A) + p_Ap_B + p_Aq_B + p_Bq_A + 2q_Aq_B\)
代码
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#include <bitset>
#include <queue>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define MAXN 200005
#define eps 1e-12
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res = res * f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
int N,M,I,P,Q;
struct node {
int next,to;
}E[MAXN * 2];
int head[MAXN],sumE,col[MAXN];
bool vis[MAXN];
void dfs(int u) {
vis[u] = 1;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(!vis[v]) {
dfs(v);
}
}
}
bool paint(int u) {
if(!col[u]) col[u] = 2;
for(int i = head[u] ; i; i = E[i].next) {
int v = E[i].to;
if(!col[v]) {col[v] = col[u] ^ 1;if(!paint(v)) return false;}
else if(col[v] == col[u]) return false;
}
return true;
}
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
void Solve() {
read(N);read(M);
int u,v;
for(int i = 1 ; i <= M ; ++i) {
read(u);read(v);
add(u,v);add(v,u);
}
for(int i = 1 ; i <= N ; ++i) {
if(!head[i]) ++I;
else if(!vis[i]){
dfs(i);
if(paint(i)) ++Q;
else ++P;
}
}
int64 ans = 1LL * I * I + 2LL * I * (N - I);
ans += 1LL * P * P + 2LL * P * Q + 2LL * Q * Q;
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}