题目链接:
https://www.lydsy.com/JudgeOnline/problem.php?id=1076
题目大意:
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?
思路:
这一步的期望=(上一步的期望+这一步的得分)/K
逆向推
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);//不可再使用scanf printf
#define Max(a, b) ((a) > (b) ? (a) : (b))//禁用于函数,会超时
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Mem(a) memset(a, 0, sizeof(a))
#define Dis(x, y, x1, y1) ((x - x1) * (x - x1) + (y - y1) * (y - y1))
#define MID(l, r) ((l) + ((r) - (l)) / 2)
#define lson ((o)<<1)
#define rson ((o)<<1|1)
#define Accepted 0
#pragma comment(linker, "/STACK:102400000,102400000")//栈外挂
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
typedef long long ll;
const int maxn = ;
const int MOD = ;//const引用更快,宏定义也更快
const int INF = 1e9 + ;
const double eps = 1e-;
const double pi = acos(-); double v[];
int d[];
double dp[][];
int main()
{
int k, n, x;
cin >> k >> n;
for(int i = ; i <= n; i++)
{
cin >> v[i];
while(cin >> x && x)d[i] += ( << (x - ));
}
for(int i = k; i >= ; i--)
{
for(int j = ; j < ( << n); j++)
{
for(int c = ; c <= n; c++)
if((d[c] & j) == d[c])//j状态包含了c的所有前驱物品
dp[i][j] += max(dp[i + ][j], dp[i + ][j | (<<(c - ))] + v[c]);//第i次啥都不取,或者取第c件物品
else dp[i][j] += dp[i + ][j];
dp[i][j] /= n;
}
}
printf("%.6f\n", dp[][]);
return Accepted;
}