Description
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?
Input
第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。
Output
输出一个实数,保留六位小数,即在最优策略下平均情况的得分。
Sample Input
1 2
1 0
2 0
1 0
2 0
Sample Output
1.500000
HINT
【样例2】 Input 6 6 12 2 3 4 5 0 15 5 0 -2 2 4 5 0 -11 2 5 0 5 0 1 2 4 5 0 Output 10.023470 【数据规模】 1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。
题解:
期望倒着推,状态压缩现在已经有的。
差不多就这样。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; double f[][]; int n,K,t;
int v[],d[],p[]; int main()
{
for(int i=;i<=;i++)
p[i]=<<(i-);
scanf("%d%d",&n,&K);
for(int i=;i<=K;i++)
{
scanf("%d%d",&v[i],&t);
while(t)
{
d[i]+=p[t];
scanf("%d",&t);
}
}
for(int i=n;i>=;i--)
for(int j=;j<=p[K+]-;j++)
{
for(int k=;k<=K;k++)
if((d[k]&j)==d[k]) f[i][j]+=max(f[i+][j],f[i+][j|p[k]]+v[k]);
else f[i][j]+=f[i+][j];
f[i][j]/=K;
}
printf("%.6lf",f[][]);
}