题目描述
给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,这样一共走K次,现在要求K次所达到的方格的数的和最大
输入输出格式
输入格式:
第一行两个数n,k(1<=n<=50, 0<=k<=10)
接下来n行,每行n个数,分别表示矩阵的每个格子的数
输出格式:
一个数,为最大和
输入输出样例
输入样例#1:
3 1
1 2 3
0 2 1
1 4 2
输出样例#1:
11
说明
每个格子中的数不超过1000
把每个点拆成两个
一条连容量为INF,费用为0的边
一条连容量为1,费用为权值相反数的边
然后跑最小费用最大流k次
把数组开大就过了
# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
# define Copy(a, b) memcpy(a, b, sizeof(a))
# define ID(a, b) n * (a - 1) + b
using namespace std;
typedef long long ll;
const int _(5010), __(1e7 + 10), INF(2147483647);
IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, k, fst[_], nxt[__], to[__], cnt, w[__], cost[__];
int S, T, max_flow, max_cost, dis[_], pv[_], pe[_], vis[_];
queue <int> Q;
IL void Add(RG int u, RG int v, RG int f, RG int co){
cost[cnt] = co; w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++;
cost[cnt] = -co; w[cnt] = 0; to[cnt] = u; nxt[cnt] = fst[v]; fst[v] = cnt++;
}
IL bool Bfs(){
Fill(dis, 127); dis[S] = 0; vis[S] = 1; Q.push(S);
while(!Q.empty()){
RG int u = Q.front(); Q.pop();
for(RG int e = fst[u]; e != -1; e = nxt[e])
if(w[e] && dis[to[e]] > dis[u] + cost[e]){
dis[to[e]] = dis[u] + cost[e];
pe[to[e]] = e; pv[to[e]] = u;
if(!vis[to[e]]) vis[to[e]] = 1, Q.push(to[e]);
}
vis[u] = 0;
}
if(dis[T] >= dis[T + 1]) return 0;
RG int ret = INF;
for(RG int u = T; u != S; u = pv[u]) ret = min(ret, w[pe[u]]);
max_cost -= ret * dis[T]; max_flow += ret;
for(RG int u = T; u != S; u = pv[u]) w[pe[u]] -= ret, w[pe[u] ^ 1] += ret;
return 1;
}
int main(RG int argc, RG char* argv[]){
Fill(fst, -1); n = Read(); k = Read();
S = 1; T = 2 * n * n;
for(RG int i = 1; i <= n; ++i)
for(RG int j = 1, a; j <= n; ++j){
a = Read(); RG int t = ID(i, j);
Add(t, t + n * n, 1, -a); Add(t, t + n * n, INF, 0);
if(i < n) Add(t + n * n, ID(i + 1, j), INF, 0);
if(j < n) Add(t + n * n, ID(i, j + 1), INF, 0);
}
while(k--) Bfs();
printf("%d\n", max_cost);
return 0;
}