利用有限差分法,解矩形波导内场解和截止频率:
这里以解TM11模为例,利用双重迭代法,每4次场值,更新一次Kc:
%%
% 求矩形波导中TM11模 截面内场分布、截止频率kc和特性阻抗Zc
% //
%
%% Init
clear; clc
w = 1.5; %收敛因子
count = ; %迭代次数
xa = ; xb = ; %矩阵长宽度
h = pi / ;
aa = h*(xa-); bb = h*(xb-); %% 赋初值
% 内点初值
for i = : (xa-)
for j = : (xb - )
u(i, j) = 1.15;
end
end % 边的初值
u(,:) = ; u(,:) = ;
u(:,) = ; u(:,) = ; % kc初值
kc = 0.15; %% 迭代更新
k = ; k2 = ;
sum1 = ; sum2 = ; sum = ; while k < count
for i = : xa-
for j = : xb-
u(i,j) = u(i,j) + w*((u(i+,j)+u(i,j+)+u(i-,j)+u(i,j-))/(-(kc*h)^) -u(i,j));
end
end
k = k + ;
k2 = k2 + ; if(rem(k2,) == )
for i = : xa-
for j = : xb-
sum1 = sum1+ u(i,j)*(u(i+,j)+u(i,j+)+u(i-,j)+u(i,j-)-*u(i,j));
sum2 = sum2 + u(i,j)^;
end
end
kc = sqrt(-sum1/sum2)/h;
end
end %% 结果展示
surf(u);
title('TM_{11}模E_z值');
colorbar c = * ^;
fc = c * kc /(*pi*^) kc
kc0 = sqrt((pi/aa)^+(pi/bb)^)
max(max(u))
最后效果如图所示: