ElasticSearch 2 (37) - 信息聚合系列之内存与延时
摘要
控制内存使用与延时
版本
elasticsearch版本: elasticsearch-2.x
内容
Fielddata
聚合使用一个叫 fielddata 的数据结构(在 Fielddata 里简单介绍)。Fielddata 通常是 Elasticsearch 集群中内存消耗最大的一部分,所以理解它的工作方式十分重要。
Fielddata 的存在是因为倒排索引只对某些操作是高效的。倒排索引的优势在于查找包含某个项的文档,而对于从另外一个方向的相反操作并不高效,即:确定只出现在单个文档里的所有项。聚合需要这种次级的辅助访问模式。
对于以下倒排索引:
Term Doc_1 Doc_2 Doc_3
------------------------------------
brown | X | X |
dog | X | | X
dogs | | X | X
fox | X | | X
foxes | | X |
in | | X |
jumped | X | | X
lazy | X | X |
leap | | X |
over | X | X | X
quick | X | X | X
summer | | X |
the | X | | X
------------------------------------
如果我们想要获得任何包含 brown
这个词的完整列表,我们会创建如下查询:
GET /my_index/_search
{
"query" : {
"match" : {
"body" : "brown"
}
},
"aggs" : {
"popular_terms": {
"terms" : {
"field" : "body"
}
}
}
}
查询部分简单又高效。倒排索引是根据项来排序的,所以我们首先在词项列表中找到 brown
,然后扫描所有列,找到包含 brown
的文档,我们可以快速看到 Doc_1
和 Doc_2
包含 brown
这个 token。
然后,对于聚合部分,我们需要找到 Doc_1
和 Doc_2
里所有唯一的词项,用倒排所以做这件事情代价很高:我们会迭代索引里的每个词项并收集 Doc_1
和 Doc_2
列里面 token。这很慢而且难以扩展:随着词项和文档的数量增加,执行时间也会增加。
Fielddata 通过转置两者间的关系来解决这个问题。倒排索引将词项映射到包含它们的文档,而 fielddata 将文档映射到它们包含的词项:
Doc Terms
---------------------------------------------------
Doc_1 | brown, dog, fox, jumped, lazy, over,
| quick, the
---------------------------------------------------
Doc_2 | brown, dogs, foxes, in, lazy, leap,
| over, quick, summer
---------------------------------------------------
Doc_3 | dog, dogs, fox, jumped, over, quick, the
---------------------------------------------------
当数据被转置之后,想要收集到 Doc_1
和 Doc_2
的唯一 token 会非常容易。获得每个文档行,获取所有的词项,然后求两个集合的并集。
因此,搜索和聚合是相互紧密缠绕的。搜索使用倒排索引查找文档,聚合收集和聚合 fielddata 里的数据,而它本身也是通过倒排索引生成的。
本章剩下的部分会涵盖关于减少 fielddata 内存占用或提升执行效率的各种功能。
聚合与分析(Aggregations and Analysis)
有些聚合,比如 terms
桶,操作字符串字段。字符串字段可能是 analyzed
或 not_analyzed
,那么问题来了,分析是怎么影响聚合的呢?
答案是影响“很多”,但可以通过一个示例来更好说明这点。首先索引一些代表美国各个州的文档:
POST /agg_analysis/data/_bulk
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New Jersey" }
{ "index": {}}
{ "state" : "New Mexico" }
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New York" }
我们希望创建一个数据集里各个州的唯一列表,并且计数。简单,让我们使用 terms
桶:
GET /agg_analysis/data/_search
{
"size" : 0,
"aggs" : {
"states" : {
"terms" : {
"field" : "state"
}
}
}
}
得到结果:
{
...
"aggregations": {
"states": {
"buckets": [
{
"key": "new",
"doc_count": 5
},
{
"key": "york",
"doc_count": 3
},
{
"key": "jersey",
"doc_count": 1
},
{
"key": "mexico",
"doc_count": 1
}
]
}
}
}
宝贝儿,这完全不是我们想要的!没有对州名计数,聚合计算了每个词的数目。背后的原因很简单:聚合是基于倒排索引创建的,倒排索引是 后置分析(post-analysis) 的。
当我们把这些文档加入到 Elasticsearch 中时,字符串 “New York
” 被分析/分词成 ["new", "york"]
。每个 token 都用来提取 fielddata 里的内容,所以我们最终看到 new
的数量而不是 New York
。
这显然不是我们想要的行为,但幸运的是很容易修正它。
我们需要为 state
定义 multifield 并且设置成 not_analyzed
。这样可以防止 New York
被分析,也意味着在聚合过程中它会以单个 token 的形式存在。让我们尝试完整的过程,但这次指定一个 raw multifield:
DELETE /agg_analysis/
PUT /agg_analysis
{
"mappings": {
"data": {
"properties": {
"state" : {
"type": "string",
"fields": {
"raw" : {
"type": "string",
"index": "not_analyzed" #1
}
}
}
}
}
}
}
POST /agg_analysis/data/_bulk
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New Jersey" }
{ "index": {}}
{ "state" : "New Mexico" }
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New York" }
GET /agg_analysis/data/_search
{
"size" : 0,
"aggs" : {
"states" : {
"terms" : {
"field" : "state.raw" #2
}
}
}
}
#1 这次我们显式映射 state
字段并包括一个 not_analyzed
辅字段。
#2 聚合针对 state.raw
字段而不是 state
。
现在运行聚合,我们得到了合理的结果:
{
...
"aggregations": {
"states": {
"buckets": [
{
"key": "New York",
"doc_count": 3
},
{
"key": "New Jersey",
"doc_count": 1
},
{
"key": "New Mexico",
"doc_count": 1
}
]
}
}
}
在实际中,这样的问题很容易被察觉,我们的聚合会返回一些奇怪的桶,我们会记住分析的问题。总之,很少有在聚合中使用分析字段的实例。当我们疑惑时,只要增加一个 multifield 就能有两种选择。
高基数内存的影响(High-Cardinality Memory Implications)
避免分析字段的另外一个原因就是:高基数字段在加载到 fielddata 时会消耗大量内存,分析的过程会经常(尽管不总是这样)生成大量的 token,这些 token 大多都是唯一的。这会增加字段的整体基数并且带来更大的内存压力。
有些类型的分析对于内存来说 极度 不友好,想想 n-gram 的分析过程,New York
会被 n-gram 成以下 token:
ne
ew
w
y
yo
or
rk
可以想象 n-gram 的过程是如何生成大量唯一 token 的,特别是在分析成段文本的时候。当这些数据加载到内存中,会轻而易举的将我们堆空间消耗殆尽。
所以,在进行跨字段聚合之前,花点时间验证一下字段是 not_analyzed
,如果我们想聚合 analyzed
的字段,确保分析过程不会生成任何不必要的 token。
限制内存使用(Limiting Memory Usage)
为了让聚合(或任何需要访问字段值的操作)更快,访问 fielddata 必须快速,这就是为什么将它载入内存的原因。但加载过多的数据到内存会导致垃圾回收变慢,因为 JVM 会尝试在堆中找到额外的空间,或甚至有可能导致 OutOfMemory 异常。
Elasticsearch 不仅仅将与查询匹配的文档载入到 fielddata 中,这可能会令我们感到吃惊,它还会将 索引内所有文档 的值加载,甚至是那些不同类型 _type
的文档!
逻辑是这样:如果查询会访问文档 X、Y 和 Z,那很有可能会在下一个查询中访问其他文档。将所有的信息一次加载,再将其维持在内存中的方式要比每次请求都扫描倒排索引的代价要低。
JVM 堆是有限资源,应该被合理利用。限制 fielddata 对堆使用的影响有多套机制,这些限制方式非常重要,因为堆栈的乱用会导致节点不稳定(感谢缓慢的垃圾回收机制),甚至导致节点宕机(通常伴随 OutOfMemory 异常)。
Fielddata的大小(Fielddata Size)
indices.fielddata.cache.size
控制为 fielddata 分配的堆空间大小。当查询需要访问新字段值时,它会先将值加载到内存中,然后尝试把它们加入到 fielddata 。如果结果中 fielddata 大小超过了指定大小,其他的值会被剔除从而获得空间。
默认情况下,设置都是 unbounded ,Elasticsearch 永远都不会从 fielddata 中剔除数据。
这个默认设置是刻意选择的:fielddata 不是临时缓存。它是驻留内存里的数据结构,必须可以快速执行访问,而且构建它的代价十分高昂。如果每个请求都重载数据,性能会十分糟糕。
一个有界的大小会强制数据结构剔除数据。我们会看合适应该设置这个值,但请首先阅读以下警告:
设想我们正在对日志进行索引,每天使用一个新的索引。通常我们只对过去一两天的数据感兴趣,尽管我们会保留老的索引,但我们很少需要查询它们。不过如果采用默认设置,旧索引的 fielddata 永远不会从缓存中剔除!fieldata 会保持增长直到 fielddata 发生断熔(参见 断路器(Circuit Breaker)),这样我们就无法载入更多的 fielddata。
这个时候,我们被困在了死胡同。但我们仍然可以访问旧索引中的 fielddata,也无法加载任何新的值。相反,我们应该剔除旧的数据,并为新值获得更多空间。
为了防止发生这样的事情,可以通过在 config/elasticsearch.yml
文件中增加配置为 fielddata 设置一个上限:
indices.fielddata.cache.size: 40%
可以设置堆大小的百分比,也可以是某个值 5gb。
有了这个设置,最久未使用(LRU)的 fielddata 会被剔除为新数据腾出空间。
监控 fielddata(Monitoring fielddata)
无论是仔细监控 fielddata 的内存使用情况,还是看有无数据被剔除都十分重要。高的剔除数可以预示严重的资源问题以及性能不佳的原因。
Fielddata 的使用可以被监控:
按索引使用
indices-stats
API:GET /_stats/fielddata?fields=*
按节点使用
nodes-stats
API:GET /_nodes/stats/indices/fielddata?fields=*
按索引节点:
GET /_nodes/stats/indices/fielddata?level=indices&fields=*
使用设置 ?fields=*
,可以将内存使用分配到每个字段。
断路器(Circuit Breaker)
机敏的读者可能已经发现 fielddata 大小设置的一个问题。fielddata 大小是在数据加载之后检查的。如果一个查询试图加载比可用内存更多的信息到 fielddata 中会发生什么?答案很丑陋:我们会碰到 OutOfMemoryException 。
Elasticsearch 包括一个 fielddata 断熔器,这个设计就是为了处理上述情况。断熔器通过内部检查(字段的类型、基数、大小等等)来估算一个查询需要的内存。它然后检查要求加载的 fielddata 是否会导致 fielddata 的总量超过堆的配置比例。
如果估算查询的大小超出限制,就会触发断路器,查询会被中止并返回异常。这都发生在数据加载之前,也就意味着不会引起 OutOfMemoryException 。
Elasticsearch 有一系列的断路器,它们都能保证内存不会超出限制:
断路器的限制可以在文件 config/elasticsearch.yml
中指定,可以动态更新一个正在运行的集群:
PUT /_cluster/settings
{
"persistent" : {
"indices.breaker.fielddata.limit" : "40%" #1
}
}
#1 这个限制是按对内存的百分比设置的。
最好为断路器设置一个相对保守点的值。记住 fielddata 需要与 request
断路器共享堆内存、索引缓冲内存和过滤器缓存。Lucene 的数据被用来构造索引,以及各种其他临时的数据结构。正因如此,它默认值非常保守,只有 60% 。过于乐观的设置可能会引起潜在的堆栈溢出(OOM)异常,这会使整个节点宕掉。
另一方面,过度保守的值只会返回查询异常,应用程序可以对异常做相应处理。异常比服务器崩溃要好。这些异常应该也能促进我们对查询进行重新评估:为什么单个查询需要超过堆内存的 60% 之多?
值得注意的是:断路器是根据总堆内存大小估算查询大小的,而非根据实际堆内存的使用情况。这是由于各种技术原因造成的(例如,堆可能看上去是满的但实际上可能只是在等待垃圾回收,这使我们难以进行合理的估算)。但作为终端用户,这意味着设置需要保守,因为它是根据总堆内存必要的,而不是可用堆内存。
Fielddata 的过滤(Fielddata Filtering)
设想我们正在运行一个网站运行用户收听他们喜欢的歌曲。为了让他们可以更容易的管理自己的音乐库,用户可以为歌曲设置任何他们喜欢的标签,这样我们就会有很多歌曲被附上 rock(摇滚)
、hiphop(嘻哈)
和 electronica(电音)
这样的标签,但也会有些歌曲被附上 my_16th_birthday_favorite_anthem
这样的标签。
现在设想我们想要为用户展示每首歌曲最受欢迎的三个标签,很有可能 rock
这样的标签会排在三个中的最前面,而 my_16th_birthday_favorite_anthem
则不太可能得到评级。尽管如此,为了计算最受欢迎的标签,我们必须强制将这些一次性使用的项加载到内存中。
感谢 fielddata 过滤,我们可以控制这种状况。我们知道自己只对最流行的项感兴趣,所以我们可以简单地避免加载那些不太有意思的长尾项:
PUT /music/_mapping/song
{
"properties": {
"tag": {
"type": "string",
"fielddata": { #1
"filter": {
"frequency": { #2
"min": 0.01, #3
"min_segment_size": 500 #4
}
}
}
}
}
}
#1 fielddata
关键字允许我们配置 fielddata 处理该字段的方式。
#2 frequency
过滤器允许我们基于项频率过滤加载 fielddata。
#3 只加载那些至少在本段文档中出现 1% 的项。
#4 忽略任何少于 500 文档的段。
有了这个映射,只有那些至少在本段文档中出现超过 1% 的项才会被加载到内存中。我们也可以指定一个最大词频,它可以被用来排除常用项,比如停用词。
这种情况下,词频是按照段来计算的。这是实现的一个限制:fielddata 是按段来加载的,所以可见的词频只是该段内的频率。但是,这个限制也有些有趣的特性:它可以让受欢迎的新项迅速提升到顶部。
比如一个新风格的歌曲在一夜之间受大众欢迎,我们可能想要将这种新风格的歌曲标签包括在最受欢迎列表中,但如果我们倚赖对索引做完整的计算获取词频,我们就必须等到新标签变得像 rock(摇滚)
和 electronica(电音)
一样流行。由于频度过滤的实现方式,新加的标签会很快作为高频标签出现在新段内,也当然会迅速上升到顶部。
min_segment_size
参数要求 Elasticsearch 忽略某个大小以下的段。如果一个段内只有少量文档,它的词频会非常粗略没有任何意义。小的分段会很快被合并到更大的分段中,也会大到足以考虑其中。
Fielddata 过滤对内存使用有巨大的影响,权衡也是显而易见的:我们实际上是在忽略数据。但对于很多应用,这种权衡是合理的,因为这些数据根本就没有被使用到。内存的节省通常要比包括一个大量而无用的长尾项更为重要。
Doc Values
内存中的 fieldadata 受堆内存大小的限制。当然这个问题可以通过横向扩展来解决(我们总可以增加新的节点),我会发现重度使用聚合和排序会引起堆空间耗尽而并没有良好利用节点里的其他资源。
fielddata 默认会不加控制的加载内容到内存中,但这并不是唯一的选择。它也可以在索引时被写入磁盘,并且能够提供与内存 fielddata 所有的功能,只不过没有使用到堆内存。这种替代格式被称为 doc values。
Doc values 是在 Elasticsearch 1.0.0 的版本中加入的,但直到最近,它们要比内存 fielddata 慢很多。在对性能进行测评分析后,发现它有很多瓶颈,不论是在 Elasticsearch 中还是在 Lucene 中都是如此,所以被移除了。从版本 2.0 开始,doc values 成为几乎所有字段类型的默认格式,但对 analyzed
的字符串字段会有明显异常发生。
Doc values 目前只比内存 fielddata 慢 10–25% ,并且它有两个主要的优势:
- 它在磁盘中而非堆内存中。这让我们可以处理那些通常难以放入内存里的大量 fielddata。事实上,我们的堆空间(
$ES_HEAP_SIZE
)现在可以设置一个较小的值,这样可以提高垃圾回收的速度,最终节点也会比较稳定。 - Doc values 是在索引时而不是在搜索时构建,但内存 fielddata 必须在搜索时构建并将倒排索引反向。因为 doc values 是预先构建的,所以可以更快的对它进行初始化。
我们用更大的索引空间换来了较慢的 fielddata 访问。Doc values 非常高效,所以对很多查询来讲,我们甚至注意不到它的速度稍稍变慢了。再加上更快的垃圾回收效率以及提高的初始化时间,显然总得来说为我们带来了好处。
需要提供的文件缓存空间越多,doc values 的性能会越好。如果保持 doc values 的文件处于文件系统的缓存中,那么从性能商讲,访问这些文件就几乎与直接读取内存是等价的。文件系统的缓存是由系统内核控制的,而非 JVM。
启用 Doc Values(Enabling Doc Values)
Doc values 默认对 numeric(数值)、日期(date)、布尔值(Boolean)、二进制值(binary)和 地理经纬度(geo-point)字段以及 not_analyzed
的字符串字段开启的。目前它们还无法使用在 analyzed
字符串字段上。如果我们确信不需要对字段进行排序或聚合操作,或者不需要用脚本访问字段,那么我们可以禁用 doc values 从而节省磁盘空间:
PUT /music/_mapping/song
{
"properties" : {
"tag": {
"type": "string",
"index" : "not_analyzed",
"doc_values": false
}
}
}
提前加载 fielddata(Preloading Fielddata)
Elasticsearch 加载内存 fielddata 的默认行为是 延迟加载 。当 Elasticsearch 接收一个需要使用某个特定字段 fielddata 的查询时,它会将索引中每个分段的完整字段内容加载到内存中。
对于小分段来说,这个过程的需要的时间可以忽略。但如果我们有些 5 GB 的分段,并希望加载 10 GB 的 fielddata 到内存中,这个过程可能会要数十秒。已经习惯亚秒响应的用户会突然遇到一个打击,网站明显无法响应。
有三种方式可以解决这个延时高峰:
- 预加载 fielddata
- 预加载全局序号
- 预热内存
所有的变化都基于同一概念:预加载 fielddata 这样在用户进行搜索时就不会碰到延迟高峰。
预加载 fielddata(Eagerly Loading Fielddata)
第一个工具称为预加载(与默认的延迟加载相对)。随着新分段的创建(通过刷新、写入或合并等方式),启动字段预加载可以使那些对搜索不可见的分段里的 fielddata 提前加载。
这就意味着首次命中分段的查询不需要促发 fielddata 的加载,因为缓存内容已经被载入到内存。这也能避免用户碰到冷缓存加载时的延时高峰。
预加载是按字段启用的,所以我们可以控制具体哪个字段可以预先加载:
PUT /music/_mapping/_song
{
"price_usd": {
"type": "integer",
"fielddata": {
"loading" : "eager" #1
}
}
}
#1 设置 fielddata.loading: eager
可以告诉 Elasticsearch 预先将此字段的内容载入内存中。
Fielddata 的载入可以使用 update-mapping
API 对已有字段设置 lazy
或 eager
两种模式。
全局序号(Global Ordinals)
有种可以用来降低字符串 fielddata 内存使用的技术叫做 序号。
设想我们有十亿文档,每个文档都有自己的 status
状态字段,状态总共有三种:status_pending
、status_published
、 status_deleted
。如果我们为每个文档都保留其状态的完整字符串形式,那么每个文档就需要使用 14 到 16 字节,或总共 15 GB。
取而代之的是我们可以指定三个不同的字符串,对其排序、编号:0,1,2。
Ordinal | Term
-------------------
0 | status_deleted
1 | status_pending
2 | status_published
序号字符串在序号列表中只存储一次,每个文档只要使用数值编号的序号来替代它原始的值。
Doc | Ordinal
-------------------------
0 | 1 # pending
1 | 1 # pending
2 | 2 # published
3 | 0 # deleted
这样可以将内存使用从 15 GB 降到 1 GB 以下!
但这里有个问题,记得 fielddata 是按分段来缓存的。如果一个分段只包含两个状态(status_deleted
和 status_published
)那么结果中的序号(0 和 1)就会与包含所有三个状态的分段不一样。
如果我们尝试对 status
字段运行 terms
聚合,我们需要对实际字符串的值进行聚合,也就是说我们需要识别所有分段中相同的值。一个简单粗暴的方式就是对每个分段执行聚合操作,返回每个分段的字符串值,再将它们归纳得出完整的结果。尽管这样做可行,但会很慢而且对大量消耗 CPU。
取而代之的是使用一个被称为 全局序号 的结构。全局序号是一个构建在 fielddata 之上的数据结构,它只占用少量内存。唯一值是跨所有分段识别的,然后将它们存入一个序号列表中,正如我们描述过的那样。
现在,terms
聚合可以对全局序号进行聚合操作,将序号转换成真实字符串值的过程只会在聚合结束时发生一次。这会将聚合(和排序)的性能提高三到四倍。
构建全局序号(Building global ordinals)
当然,天下没有免费的晚餐。全局序号分布在索引的所有段中,所以如果新增或删除一个分段时,需要对全局序号进行重建。重建需要读取每个分段的每个唯一项,基数越高(即存在更多的唯一项)这个过程会越长。
全局序号是构建在内存 fielddata 和 doc values 之上的。实际上,它们正是 doc values 性能表现不错的一个主要原因。
和 fielddata 加载一样,全局序号默认也是延迟构建的。首个需要访问索引内 fielddata 的请求会促发全局序号的构建。由于字段的基数不同,这会导致给用户带来显著延迟这一糟糕结果。一旦全局序号发生重建,仍会使用旧的全局序号,直到索引中的分段产生变化:在刷新、写入或合并之后。
预间全局序号(Eager global ordinals)
单个字符串字段可以通过配置预先构建全局序号:
PUT /music/_mapping/_song
{
"song_title": {
"type": "string",
"fielddata": {
"loading" : "eager_global_ordinals" #1
}
}
}
#1 设置 eager_global_ordinals
也暗示着 fielddata 是预加载的。
正如 fielddata 的预加载一样,预构建全局序号发生在新分段对于搜索可见之前。
因此,我们只能为字符串字段预构建其全局序号。
也可以对 Doc values 进行全局序号预构建:
PUT /music/_mapping/_song
{
"song_title": {
"type": "string",
"doc_values": true,
"fielddata": {
"loading" : "eager_global_ordinals" #1
}
}
}
#1 这种情况下,fielddata 没有载入到内存中,而是 doc values 被载入到文件系统缓存中。
与 fielddata 预加载不一样,预建全局序号会对数据的实时性产生影响,构建全局序号会使一个刷新延时几秒。选择在于是在每次刷新时付出代价,还是在刷新后的第一次查询时。如果经常索引而查询较少,那么可能在查询时付出代价要比每次刷新时要好。
索引预热器(Index Warmers)
最后我们谈谈 索引预热器。预热器早于 fielddata 预加载和全局序号预加载之前出现,它们仍然尤其存在的理由。一个索引预热器允许我们指定一个查询和聚合须要在新分片对于搜索可见之前执行。这个想法是通过预先填充或预热缓存让用户永远无法遇到延迟的波峰。
原来,预热器最重要的用法是确保 fielddata 被预先加载,因为这通常是最耗时的一步。现在可以通过前面讨论的那些技术来更好的控制它,但是预热器还是可以用来预建过滤器缓存,当然我们也还是能选择用它来预加载 fielddata。
让我们注册一个预热器然后解释发生了什么:
PUT /music/_warmer/warmer_1 #1
{
"query" : {
"filtered" : {
"filter" : {
"bool": {
"should": [ #2
{ "term": { "tag": "rock" }},
{ "term": { "tag": "hiphop" }},
{ "term": { "tag": "electronics" }}
]
}
}
}
},
"aggs" : {
"price" : {
"histogram" : {
"field" : "price", #3
"interval" : 10
}
}
}
}
#1 预热器被关联到索引(music
)上,使用接入口 _warmer
以及 ID (warmer_1
)。
#2 为三种最受欢迎的曲风预建过滤器缓存。
#3 字段 price
的 fielddata 和全局序号会被预加载。
预热器是根据具体索引注册的,每个预热器都有唯一的 ID ,因为每个索引可能有多个预热器。
然后我们可以指定查询,任何查询。它可以包括查询、过滤器、聚合、排序值、脚本,任何有效的查询表达式都毫不夸张。这里的目的是想注册那些可以代表用户产生流量压力的查询,从而将合适的内容载入缓存。
当新建一个分段时,Elasticsearch 理论上会执行注册在预热器中的查询。执行这些查询会强制加载缓存,只有在所有预热器执行完,这个分段才会对搜索可见。
有些管理的细节(比如获得已有预热器和删除预热器)没有在本小节提到,剩下的详细内容可以参考 预热器文档(warmers documentation)。
避免组合爆炸(Preventing Combinatorial Explosions)
terms
桶基于我们的数据动态构建桶;它并不知道到底生成了多少桶。尽管这对单个聚合还行,但考虑当一个聚合包含另外一个聚合,这样一层又一层的时候会发生什么。合并每个聚合的唯一值会导致它随着生成桶的数量而发生爆炸。
设想我们有一个表示影片大小适度的数据集合。每个文档都列出了影片的演员:
{
"actors" : [
"Fred Jones",
"Mary Jane",
"Elizabeth Worthing"
]
}
如果我们想要确定出演影片最多的是个演员以及与他们合作最多的演员,使用聚合并不算什么:
{
"aggs" : {
"actors" : {
"terms" : {
"field" : "actors",
"size" : 10
},
"aggs" : {
"costars" : {
"terms" : {
"field" : "actors",
"size" : 5
}
}
}
}
}
}
这会返回前十位出演最多的演员,以及与他们合作最多的五位演员。这似乎是个不大的聚合,只返回 50 个值!
但是,这个看上去无伤大雅的查询可以轻而易举地消耗大量内存,我们可以通过在内存中构建一个树来查看这个 terms
聚合。actors
聚合会构建树的第一层,每个演员都有一个桶。然后,内套在第一层的每个节点之下,costar
聚合会构建第二层,每个联合出演一个桶,如图 Figure 42, “Build full depth tree” 所示,这意味着每部影片会生成 n*n 个桶!
Figure 42. Build full depth tree
用真实点的数字,设想平均每部影片有 10 名演员,每部影片就会生成 10 * 10 == 100 个桶。如果总共有 20,000 部影片,粗率计算就会生成 2,000,000 个桶。
现在,记住,聚合只是简单的希望得到前十位演员和与他们联合出演者,总共 50 个值。为了得到最终的结果,我们创建了一个有 2,000,000 桶的树,然后对其排序,最后将结果减少到前 10 位演员。图 Figure 43, “Sort tree” 和图 Figure 44, “Prune tree” 对这个过程进行了阐述。
Figure 43. Sort tree
Figure 44. Prune tree
这时我们一定非常抓狂,2 万文档虽然微不足道,但是聚合也不轻松。如果我们有 2 亿文档,想要得到前 100 位演员以及与他们合作最多的 20 位演员,以及合作者的合作者会怎样?
可以判断组合扩大快速增长会使这种策略难以维持。世界上并不存在足够的内存来支持这种非受控状态下的组合爆炸。
Depth-First Versus Breadth-First
Elasticsearch 允许我们改变聚合的集合模式,就是为了应对这种状况。我们之前展示的策略叫做 深度优先 ,它是默认设置,先构建完整的树,然后修剪无用节点。深度优先的方式对于大多数聚合都能正常工作,但对于如我们演员和联合演员这样例子的情形就不太适用。
为了应对这些特殊的应用场景,我们应该使用另一种集合策略叫做 广度优先 。这种策略的工作方式有些不同,它先执行第一层聚合,在继续下一层聚合之前会先做修剪。图 Figure 45, “Build first level” 到 Figure 47, “Prune first level” 对这个过程进行了阐述。
在我们的示例中,actors
聚合会首先执行,在这个时候,我们的树只有一层,但我们已经知道了前 10 位的演员!这就没有必要保留其他的演员信息,因为它们无论如何都不会出现在前十位中。
Figure 45. Build first level
Figure 46. Sort first level
Figure 47. Prune first level
因为我们已经知道了前十名演员,我们可以安全的修剪其他节点。修剪后,下一层是基于它的执行模式读入的,重复执行这个过程直到聚合完成,如图 Figure 48, “Populate full depth for remaining nodes” 所示。这就可以避免那种适于使用广度优先策略的查询,因为组合而导致桶的爆炸增长和内存急剧降低的问题。
Figure 48. Populate full depth for remaining nodes
要使用广度优先,只需简单的通过参数 collect
开启:
{
"aggs" : {
"actors" : {
"terms" : {
"field" : "actors",
"size" : 10,
"collect_mode" : "breadth_first" #1
},
"aggs" : {
"costars" : {
"terms" : {
"field" : "actors",
"size" : 5
}
}
}
}
}
}
#1 按聚合来开启 breadth_first
。
广度优先只有在当桶内的文档比可能生成的桶多时才应该被用到。深度搜索在桶层对文档数据缓存,然后在修剪阶段后的子聚合过程中再次使用这些文档缓存。
在修剪之前,广度优先聚合对于内存的需求与每个桶内的文档数量成线性关系。对于很多聚合来说,每个桶内的文档数量是相当大的。想象一个以月为间隔的直方图:每个桶内可能有数以亿计的文档。这使广度优先不是一个好的选择,这也是为什么深度优先作为默认策略的原因。
但对于演员的示例,默认聚合生成大量的桶,但每个桶内的文档相对较少,而广度优先的内存效率更高。如果不是这样,我们构建的聚合要不然就会失败。