题意:
给定n, k,求$\displaystyle \sum_{i=1}^nk\;mod\;i$
n,k<=1e9
思路:
先转化为$\displaystyle \sum_{i=1}^n(k-i\lfloor\frac{k}{i}\rfloor)=\displaystyle \sum_{i=1}^nk-\sum_{i=1}^ni\lfloor\frac{k}{i}\rfloor$
而k/i在一定范围内是不变的,所以分块求等差数列就可以了
代码:
/**************************************************************
Problem: 1257
User: wrjlinkkkkkk
Language: C++
Result: Accepted
Time:60 ms
Memory:1288 kb
****************************************************************/ #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<functional> #define fst first
#define sc second
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1
#define lowbit(x) ((x)&(-x)) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL; const db eps = 1e-;
const int mod = 1e9+;
const int maxn = 2e6+;
const int maxm = 2e6+;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0); int main() {
ll n, k;
scanf("%lld %lld", &n, &k);
ll ans = n*k;
for(ll l = , r = ; l <= min(k, n); l = r+){
r = min(n, k/(k/l));
ans -= (((l+r)*(k/l))*(r-l+))>>;
}
printf("%lld",ans);
return ;
}