2851: 极限满月
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 170 Solved: 82
[Submit][Status][Discuss]
Description
Input
第一行一个正整数。
之后行描述集合。第一个数表示集合中元素的个数,之后给出集合中的元素。
之后一行一个正整数。
之后行每行描述一个询问。格式与之前相同。
Output
对于每个询问,在单独的一行内输出答案。
Sample Input
7
0
1 1
1 1
1 2
2 2 3
0
2 2 6
3
2 2 3
2 3 5
2 4 5
0
1 1
1 1
1 2
2 2 3
0
2 2 6
3
2 2 3
2 3 5
2 4 5
Sample Output
3
3
4
3
4
HINT
/*对于100% 的数据,1 <= n, m <= 50000,1 <= 10^9,-10^9 <= a, b, x, y <= 10^9。*/
[Discuss]里的正确数据范围:
n<=200000 m<=200000
A集合元素总个数<=300000
输入总数<=2500000
Source
想法:
如果把Bi当成红点,i当成蓝点,B0为一个虚红点,边V->U为U∈V。因为"a∈Ak=>a<k",所以每个Bi(i>0)红点只会连一个蓝点与一个红点。因此红点构成一棵树。
显然易见,Bi所连的红点为{Bj|j∈Ai}的lca。于是答案变成求集合{S}中所有红点所包含蓝点的并的大小。因为每个点蓝点只会被一个红点连边,所以可以把蓝点捆在该红点上,答案就变成统计{S}中所有红点的祖先并(除去B0虚红点)的大小。于是可以使用虚树或者树链的并解决。
复杂度O((∑|A|+∑|S|)logn).
细节:你会发现建红点树的过程是动态加点的在线求lca的过程。可以用倍增(仅支持加点)或LCT(支持加点删点换根....)解决。
#include<cmath>
#include<cstdio>
#include<vector>
#include<algorithm> typedef long long ll;
const int N();
struct Node
{
int nd,nx;
}bot[N];
int tot,first[N],depth[N],dfn[N],cnt;
void add(int a,int b){bot[++tot]=(Node){b,first[a]};first[a]=tot;}
int F[][N],logg;
int n,m,h[N],S;
std::vector<int>A[N];int sz,x;
template<class T>void read(T&x)
{
x=;bool f=;char c=getchar();
while((c<''||c>'')&&c!='-')c=getchar();if(c=='-')f=,c=getchar();
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
x=f?-x:x;
}
void swap(int &x,int &y){if(x==y)return;x^=y;y^=x;x^=y;}
int lca(int a,int b)
{
if(depth[a]<depth[b])swap(a,b);
// fprintf(stderr,"a:%d b:%d\b",a,b);
for(int k=depth[a]-depth[b],j=;k;k>>=,j++)
if(k&)a=F[j][a];
// fprintf(stderr,"a:%d b:%d\b",a,b);
if(a==b)return a;
for(int j=logg;F[][a]!=F[][b];j--)
if(F[j][a]!=F[j][b])a=F[j][a],b=F[j][b];
return F[][a];
}
void relax(int x)
{
for(int j=;j<=logg&&F[j-][x];j++)
F[j][x]=F[j-][ F[j-][x] ];
}
namespace GetTree
{
void init()
{
read(n);
for(int i=;i<=n;i++)
{
read(sz);
while(sz--) read(x),A[i].push_back(x);
std::sort(A[i].begin(),A[i].end());
}
}
void build()
{
logg=log2(n);
for(int i=,now;i<=n;i++)
{
now=n+;
if(A[i].size())
{
now=A[i][];
for(int v=,sz=A[i].size();v<sz;v++)
{
// fprintf(stderr,"now:%d\n",now);
now=lca(now,A[i][v]);
// fprintf(stderr,"A:%d\n",A[i][v]);
}
}
// fprintf(stderr,"now:%d\n",now);
F[][i]=now;depth[i]=depth[now]+;
add(now,i);
relax(i);
}
}
void DFS(int x)
{
dfn[x]=++cnt;
for(int v=first[x];v;v=bot[v].nx) DFS(bot[v].nd);
}
void run()
{
init();
build();
DFS(n+);
}
} bool cmp(int a,int b){return dfn[a]<dfn[b];}
void total()
{
std::sort(h+,h+S+,cmp);
int ans=;
for(int i=,t;i<=S;i++)
{
ans+=depth[h[i]];
// fprintf(stderr,"ans:%d\n",ans);
if(i>)
{
t=lca(h[i-],h[i]);
ans-=depth[t];
}
}
printf("%d\n",ans);
} int main()
{
// freopen("C.in","r",stdin);
GetTree::run();
read(m);
for(int i=;i<=m;i++)
{
read(S);
for(int j=;j<=S;j++) read(h[j]);
total();
}
return ;
}