题目大意:有一个可重集$S$,有两个操作:
- $1\;l\;r:$表示把$S$变为$S\cup[l,r]$
- $2:$表示将$S$从小到大排序,记为$a_1,a_2,\dots,a_n$,然后求出$\bigoplus\limits_{i=2}^n(a_i^2-a_{i-1}^2)$,$\bigoplus$表示异或
题解:假设$a_1,a_2,\dots,a_n=[l,l+n)$,发现$\bigoplus\limits_{i=2}^n(a_i^2-a_{i-1}^2)=(2l+1)\oplus(2l+3)\oplus\dots\oplus(2l+2n-1)$,然后这玩意儿肯定可以打表找规律什么的$O(1)$求。
题目转化为如何维护这东西,发现这个集合重复不重复没有关系(写一下式子就知道了),可以动态开点线段树,把整个区间都被覆盖的节点打个标记,处理一下两个区间交接的地方就好了
卡点:无
C++ Code:
#include <algorithm>
#include <cstdio>
#include <cctype>
namespace __IO {
namespace R {
int x, ch;
inline int read() {
while (isspace(ch = getchar())) ;
for (x = ch & 15; isdigit(ch = getchar()); ) x = x * 10 + (ch & 15);
return x;
}
}
}
using __IO::R::read; #define maxn 300010
inline int calc(const int x) {
switch (x & 3) {
case 0: return 1;
case 1: return x - 1 << 1;
case 2: return 3;
case 3: return x << 1;
}
return 20040826;
}
inline long long sqr(const int x) { return static_cast<long long> (x) * x; } namespace SgT {
#define N (maxn * 19)
const int maxl = 1, maxr = 1e9;
long long V[N];
bool tg[N];
int lc[N], rc[N], Lp[N], Rp[N];
int root, idx; int L, R;
void __modify(int &rt, const int l, const int r) {
if (!rt) rt = ++idx;
if (tg[rt]) return ;
if (L <= l && R >= r) {
Lp[rt] = l, Rp[rt] = r, tg[rt] = true;
V[rt] = calc(r) ^ calc(l);
return ;
}
const int mid = l + r >> 1;
if (L <= mid) __modify(lc[rt], l, mid);
if (R > mid) __modify(rc[rt], mid + 1, r); const int lc = SgT::lc[rt], rc = SgT::rc[rt];
Lp[rt] = Lp[lc] ? Lp[lc] : Lp[rc];
Rp[rt] = Rp[rc] ? Rp[rc] : Rp[lc];
if (Rp[lc] && Lp[rc]) V[rt] = V[lc] ^ V[rc] ^ (sqr(Lp[rc]) - sqr(Rp[lc]));
else V[rt] = V[lc] | V[rc];
if (tg[lc] && tg[rc]) tg[rt] = true;
}
void modify(const int __L, const int __R) {
L = __L, R = __R;
__modify(root, maxl, maxr);
}
#undef N
} int main() {
for (int n = read(); n; --n) {
int op = read();
if (op == 1) {
static int l, r;
l = read(), r = read();
SgT::modify(l, r);
} else printf("%lld\n", SgT::V[SgT::root]);
}
return 0;
}