有了数据,有了网络结构,下面我们就来写 cifar10 的代码。

首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码:

from __future__ import absolute_import        # 绝对导入
from __future__ import division # 精确除法,/是精确除,//是取整除
from __future__ import print_function # 打印函数 import os
import tensorflow as tf # 建立一个 cifar10_data 的类, 输入文件名队列,输出 labels 和images
class cifar10_data(object): def __init__(self, filename_queue): # 类初始化 # 根据上一篇文章介绍的文件格式,定义初始化参数
self.height = 32
self.width = 32
self.depth = 3
# label 一个字节
self.label_bytes = 1
# 图像 32*32*3 = 3072 字节
self.image_bytes = self.height * self.width * self.depth
# 读取的固定字节长度为 3072 + 1 = 3073
self.record_bytes = self.label_bytes + self.image_bytes
self.label, self.image = self.read_cifar10(filename_queue) def read_cifar10(self, filename_queue): # 读取固定长度文件
reader = tf.FixedLengthRecordReader(record_bytes = self.record_bytes)
key, value = reader.read(filename_queue)
record_bytes = tf.decode_raw(value, tf.uint8)
# tf.slice(record_bytes, 起始位置, 长度)
label = tf.cast(tf.slice(record_bytes, [0], [self.label_bytes]), tf.int32)
# 从 label 起,切片 self.image_bytes = 3072 长度为图像
image_raw = tf.slice(record_bytes, [self.label_bytes], [self.image_bytes])
# 图片转化成 3*32*32
image_raw = tf.reshape(image_raw, [self.depth, self.height, self.width])
# 图片转化成 32*32*3
image = tf.transpose(image_raw, (1,2,0))
image = tf.cast(image, tf.float32)
return label, image def inputs(data_dir, batch_size, train = True, name = 'input'): # 建议加上 tf.name_scope, 可以画出漂亮的流程图。
with tf.name_scope(name):
if train:
# 要读取的文件的名字
filenames = [os.path.join(data_dir,'data_batch_%d.bin' % ii)
for ii in range(1,6)]
# 不存在该文件的时候报错
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f)
# 用文件名生成文件名队列
filename_queue = tf.train.string_input_producer(filenames)
# 送入 cifar10_data 类中
read_input = cifar10_data(filename_queue)
images = read_input.image
# 图像白化操作,由于网络结构简单,不加这句正确率很低。
images = tf.image.per_image_whitening(images)
labels = read_input.label
# 生成 batch 队列,16 线程操作,容量 20192,min_after_dequeue 是
# 离队操作后,队列中剩余的最少的元素,确保队列中一直有 min_after_dequeue
# 以上元素,建议设置 capacity = min_after_dequeue + batch_size * 3
num_preprocess_threads = 16
image, label = tf.train.shuffle_batch(
[images,labels], batch_size = batch_size,
num_threads = num_preprocess_threads,
min_after_dequeue = 20000, capacity = 20192) return image, tf.reshape(label, [batch_size]) else:
filenames = [os.path.join(data_dir,'test_batch.bin')]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f) filename_queue = tf.train.string_input_producer(filenames)
read_input = cifar10_data(filename_queue)
images = read_input.image
images = tf.image.per_image_whitening(images)
labels = read_input.label
num_preprocess_threads = 16
image, label = tf.train.shuffle_batch(
[images,labels], batch_size = batch_size,
num_threads = num_preprocess_threads,
min_after_dequeue = 20000, capacity = 20192) return image, tf.reshape(label, [batch_size])

在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10.py,输入如下代码

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import os
import os.path
import time
from datetime import datetime import numpy as np
from six.moves import xrange
import tensorflow as tf import my_cifar10_input BATCH_SIZE = 64
LEARNING_RATE = 0.1
MAX_STEP = 50000
TRAIN = True # 用 get_variable 在 CPU 上定义常量
def variable_on_cpu(name, shape, initializer = tf.constant_initializer(0.1)):
with tf.device('/cpu:0'):
dtype = tf.float32
var = tf.get_variable(name, shape, initializer = initializer,
dtype = dtype)
return var # 用 get_variable 在 CPU 上定义变量
def variables(name, shape, stddev):
dtype = tf.float32
var = variable_on_cpu(name, shape,
tf.truncated_normal_initializer(stddev = stddev,
dtype = dtype))
return var # 定义网络结构
def inference(images):
with tf.variable_scope('conv1') as scope:
# 用 5*5 的卷积核,64 个 Feature maps
weights = variables('weights', [5,5,3,64], 5e-2)
# 卷积,步长为 1*1
conv = tf.nn.conv2d(images, weights, [1,1,1,1], padding = 'SAME')
biases = variable_on_cpu('biases', [64])
# 加上偏置
bias = tf.nn.bias_add(conv, biases)
# 通过 ReLu 激活函数
conv1 = tf.nn.relu(bias, name = scope.name)
# 柱状图总结 conv1
tf.histogram_summary(scope.name + '/activations', conv1)
with tf.variable_scope('pooling1_lrn') as scope:
# 最大池化,3*3 的卷积核,2*2 的卷积
pool1 = tf.nn.max_pool(conv1, ksize = [1,3,3,1], strides = [1,2,2,1],
padding = 'SAME', name='pool1')
# 局部响应归一化
norm1 = tf.nn.lrn(pool1, 4, bias = 1.0, alpha = 0.001/9.0,
beta = 0.75, name = 'norm1') with tf.variable_scope('conv2') as scope:
weights = variables('weights', [5,5,64,64], 5e-2)
conv = tf.nn.conv2d(norm1, weights, [1,1,1,1], padding = 'SAME')
biases = variable_on_cpu('biases', [64])
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name = scope.name)
tf.histogram_summary(scope.name + '/activations', conv2)
with tf.variable_scope('pooling2_lrn') as scope:
norm2 = tf.nn.lrn(conv2, 4, bias = 1.0, alpha = 0.001/9.0,
beta = 0.75, name = 'norm1')
pool2 = tf.nn.max_pool(norm2, ksize = [1,3,3,1], strides = [1,2,2,1],
padding = 'SAME', name='pool1') with tf.variable_scope('local3') as scope:
# 第一层全连接
reshape = tf.reshape(pool2, [BATCH_SIZE,-1])
dim = reshape.get_shape()[1].value
weights = variables('weights', shape=[dim,384], stddev=0.004)
biases = variable_on_cpu('biases', [384])
# ReLu 激活函数
local3 = tf.nn.relu(tf.matmul(reshape, weights)+biases,
name = scope.name)
# 柱状图总结 local3
tf.histogram_summary(scope.name + '/activations', local3) with tf.variable_scope('local4') as scope:
# 第二层全连接
weights = variables('weights', shape=[384,192], stddev=0.004)
biases = variable_on_cpu('biases', [192])
local4 = tf.nn.relu(tf.matmul(local3, weights)+biases,
name = scope.name)
tf.histogram_summary(scope.name + '/activations', local4) with tf.variable_scope('softmax_linear') as scope:
# softmax 层,实际上不是严格的 softmax ,真正的 softmax 在损失层
weights = variables('weights', [192, 10], stddev=1/192.0)
biases = variable_on_cpu('biases', [10])
softmax_linear = tf.add(tf.matmul(local4, weights), biases,
name = scope.name)
tf.histogram_summary(scope.name + '/activations', softmax_linear) return softmax_linear
# 交叉熵损失层
def losses(logits, labels):
with tf.variable_scope('loss') as scope:
labels = tf.cast(labels, tf.int64)
# 交叉熵损失,至于为什么是这个函数,后面会说明。
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits\
(logits, labels, name='cross_entropy_per_example')
loss = tf.reduce_mean(cross_entropy, name = 'loss')
tf.scalar_summary(scope.name + '/x_entropy', loss) return loss

现在来看下为什么要用 tf.nn.sparse_softmax_cross_entropy_with_logits 这么长的一个函数,在官方文档中,一共有4中交叉熵损失函数:

1. tf.nn.sigmoid_cross_entropy_with_logits(logits, targets,name=None)

2. tf.nn.softmax_cross_entropy_with_logits(logits, labels,dim=-1, name=None)

3. tf.nn.sparse_softmax_cross_entropy_with_logits(logits,labels, name=None)

4. tf.nn.weighted_cross_entropy_with_logits(logits, targets,pos_weight, name=None)

分别来看一下:

1)第一个函数就是传统的 sigmoid 交叉熵,假设 x = logitsz = targets,那么第一个函数的交叉熵损失可以写作:

z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))

注意,sigmoid 用于二分类,logits 和 targets 维度要相同。

2)第二个函数是 softmax 交叉熵,用于多分类,并且类间相互独立,不能一个元素既属于这个类又属于那个类。并且,也是要求logits 和 targets 维度要相同。

例如,上面的 losses 代码中目标分为10类,logits 是 64*10 维度的,而 targets(也就是labels) 是 [64] 维度的,就不能用这个函数,要想使用这个函数,得把 labels 变成 64*10 的 onehot encoding (独热编码),假设 labels 的 64 个值分别是:[1,5,2,3,0,4,9,8,7,5,6,4,5,8...],那么 labels 变成独热编码以后,第一行变成:[0,1,0,0,0,0,0,0,0,0],第二行变为:[0,0,0,0,0,1,0,0,0,0],第三行:[0,0,1,0,0,0,0,0,0,0],也就是:每行的第 label 个值变为1,其他是0,用代码可以如下写:

targets = np.zeros([64,10], dtype = np.float)
for index, value in enumerate(labels):
targets[index, value] = 1.0

3)也就是我们所使用的函数,与第二个函数不同的一点是,不要求维度相同,只要求第 0 维相同,若 logits 是 64*10 维度的, targets(也就是labels) 是 [64] 维度的,那么第 0 个维度相同,就可以使用这个函数了,不需要进行 onehot encoding ,从上一篇文章我们所画出来的流程图可以明显看出来,loss 层的输入,一个是 64*10 维,一个是 64 维。并且这个函数,自带了 softmax 的计算,所以,在 inference 的最后一层,我们实际上计算的不是真正的 softmax。

4)和第一个函数差不多相同,只是可以加一个权重 pos_weight, 假设 x = logitsz = targetsq = pos_weight,那么第四个函数的交叉熵损失为:

  q * z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
= q * z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
= q * z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= q * z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
= (1 - z) * x + (qz + 1 - z) * log(1 + exp(-x))
= (1 - z) * x + (1 + (q - 1) * z) * log(1 + exp(-x))

参考文献:

1. https://www.tensorflow.org/api_docs/python/nn/classification

2. https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10

04-16 11:18