Problem 2059 MM

Accept: 109    Submit: 484
Time Limit: 1000 mSec    Memory Limit : 32768 KB

FZU 2059 MM (并查集+排序插入)-LMLPHP Problem Description

There is a array contain N(1<N<=100000) numbers. Now give you M(1<M<10000) query.

Every query will be:

1 x : ask longest substring which every number no less than x

2 y x : change the A[y] to x. there are at most change 10 times.

For each ask can you tell me the length of longest substring.

FZU 2059 MM (并查集+排序插入)-LMLPHP Input

There are multiple tests.

each test first line contain two integer numbers N M,second line contain N integer numbers.

Next M lines each line will be:

1 x : ask longest substring which every number no less than x

2 y x : change the A[y] to x. there are at most change 10 times.

0 < N <= 100000, 0 < M <= 10000, -1000000000 <= A[i] <= 1000000000

FZU 2059 MM (并查集+排序插入)-LMLPHP Output

Each ask output the length of longest substring .

FZU 2059 MM (并查集+排序插入)-LMLPHP Sample Input

5 5
1 2 3 2 1
1 2
1 3
2 3 1
1 2
1 3

FZU 2059 MM (并查集+排序插入)-LMLPHP Sample Output

3
1
1
0
 
题意:  给一个数列,两种操作,第一种操作是输入一个x,查找一个子串满足每个元素的值都不小于x且长度最大,输出这个最大值,第二个操作是输入x和y,修改a[y]=x,第二个操作最多只有十次
 
思路: o(nlogn)预处理,o(logn)查询。由于修改操作只有10次,所以每次修改都直接暴力预处理一遍,然后考虑没有修改操作的情况。
预处理方法:把数列值排序一下,然后从大到小逐个插入,用并查集维护插入的这个点能连接的最长长度,在这个过程中维护一个最大值,最大值就是答案了。
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int INF = 1e9;
const double eps = 1e-;
const int N = ;
int cas = ; struct _node{
int pos,val,ans;
friend bool operator < (const _node &a, const _node &b)
{
return a.val < b.val;
}
};
int n,m;
int fa[N],sum[N],b[N],mxval;
_node a[N]; int find(int x)
{
return fa[x]==x?x:fa[x]=find(fa[x]);
} void un(int u,int v)
{
u=find(u), v=find(v);
fa[u]=v;
sum[v]+=sum[u];
} void pre()
{
memset(sum,,sizeof(sum));
mxval = -INF-;
for(int i=;i<n;i++) fa[i]=i;
for(int i=;i<n;i++)
{
a[i].val=b[i],a[i].pos=i;
if(a[i].val > mxval) mxval = a[i].val;
}
sort(a,a+n);
int mx = ;
for(int i=n-;i>=;i--)
{
sum[a[i].pos]=;
if(sum[a[i].pos-]) un(a[i].pos-,a[i].pos);
if(sum[a[i].pos+]) un(a[i].pos+,a[i].pos);
if(mx < sum[find(a[i].pos)]) mx = sum[fa[a[i].pos]];
a[i].ans = mx;
}
} int solve(int x)
{
_node t;
t.val=x;
int id = lower_bound(a,a+n,t) - a;
return a[id].ans;
} void run()
{
for(int i=;i<n;i++)
scanf("%d",b+i);
pre();
int x,y,op;
while(m--)
{
scanf("%d",&op);
if(op==)
{
scanf("%d",&x);
if(x>mxval) puts("");
else printf("%d\n",solve(x));
}
else
{
scanf("%d%d",&y,&x);
b[y-]=x;
pre();
}
}
} int main()
{
#ifdef LOCAL
freopen("case.txt","r",stdin);
#endif
while(scanf("%d%d",&n,&m)!=EOF)
run();
return ;
}
05-18 12:05