吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

吴裕雄--天生自然 R语言开发学习:广义线性模型-LMLPHP

#----------------------------------------------#
# R in Action (2nd ed): Chapter 13 #
# Generalized linear models #
# requires packages AER, robust, gcc #
# install.packages(c("AER", "robust", "gcc")) #
#----------------------------------------------# ## Logistic Regression # get summary statistics
data(Affairs, package="AER")
summary(Affairs)
table(Affairs$affairs) # create binary outcome variable
Affairs$ynaffair[Affairs$affairs > 0] <- 1
Affairs$ynaffair[Affairs$affairs == 0] <- 0
Affairs$ynaffair <- factor(Affairs$ynaffair,
levels=c(0,1),
labels=c("No","Yes"))
table(Affairs$ynaffair) # fit full model
fit.full <- glm(ynaffair ~ gender + age + yearsmarried + children +
religiousness + education + occupation +rating,
data=Affairs,family=binomial())
summary(fit.full) # fit reduced model
fit.reduced <- glm(ynaffair ~ age + yearsmarried + religiousness +
rating, data=Affairs, family=binomial())
summary(fit.reduced) # compare models
anova(fit.reduced, fit.full, test="Chisq") # interpret coefficients
coef(fit.reduced)
exp(coef(fit.reduced)) # calculate probability of extramariatal affair by marital ratings
testdata <- data.frame(rating = c(1, 2, 3, 4, 5),
age = mean(Affairs$age),
yearsmarried = mean(Affairs$yearsmarried),
religiousness = mean(Affairs$religiousness))
testdata$prob <- predict(fit.reduced, newdata=testdata, type="response")
testdata # calculate probabilites of extramariatal affair by age
testdata <- data.frame(rating = mean(Affairs$rating),
age = seq(17, 57, 10),
yearsmarried = mean(Affairs$yearsmarried),
religiousness = mean(Affairs$religiousness))
testdata$prob <- predict(fit.reduced, newdata=testdata, type="response")
testdata # evaluate overdispersion
fit <- glm(ynaffair ~ age + yearsmarried + religiousness +
rating, family = binomial(), data = Affairs)
fit.od <- glm(ynaffair ~ age + yearsmarried + religiousness +
rating, family = quasibinomial(), data = Affairs)
pchisq(summary(fit.od)$dispersion * fit$df.residual,
fit$df.residual, lower = F) ## Poisson Regression # look at dataset
data(breslow.dat, package="robust")
names(breslow.dat)
summary(breslow.dat[c(6, 7, 8, 10)]) # plot distribution of post-treatment seizure counts
opar <- par(no.readonly=TRUE)
par(mfrow=c(1, 2))
attach(breslow.dat)
hist(sumY, breaks=20, xlab="Seizure Count",
main="Distribution of Seizures")
boxplot(sumY ~ Trt, xlab="Treatment", main="Group Comparisons")
par(opar) # fit regression
fit <- glm(sumY ~ Base + Age + Trt, data=breslow.dat, family=poisson())
summary(fit) # interpret model parameters
coef(fit)
exp(coef(fit)) # evaluate overdispersion
deviance(fit)/df.residual(fit)
library(qcc)
qcc.overdispersion.test(breslow.dat$sumY, type="poisson") # fit model with quasipoisson
fit.od <- glm(sumY ~ Base + Age + Trt, data=breslow.dat,
family=quasipoisson())
summary(fit.od)
05-14 14:11