题解
题意
- 给你一个无向图,求两个点之间的一条路径,使路径上的最小值最大
算法:Kruskal最大生成树+倍增lca
分析
- 首先容易知道,答案一定在该图的最大生成树上
- 之后问题便转换成了树上点\(u\)到\(v\)的简单路径42中最小的边权
- 经典的树上倍增
- 用fa[i][j]来表示从第\(i\)个点往上\(2^j\)条边到达的点
- 用s[i][j]来表示从第\(i\)个点往上\(2^j\)条边中的最小值
- 答案就是在求lca的过程中统计一下最小值就可以了(具体详见代码)
复杂度:
Kruskal \(O(m \log m)\)
倍增 \(O(n \log n)\)
总复杂度 \(O(n \log n + m \log m)\)
代码:
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN = 50050;
int n, m, q;
int p[MAXN];
int dep[MAXN], vis[MAXN], fa[MAXN][20], s[MAXN][20];
struct Edge
{
int u, v, w;
bool operator < (const Edge &_edge) const
{
return w > _edge.w;
}
}edge[MAXN];
int ecnt;
struct node
{
int v, w;
node *next;
}pool[MAXN], *head[MAXN];
void addedge(int u, int v, int w)
{
node *p = &pool[++ecnt], *q = &pool[++ecnt];
p->v = v, p->w = w, p->next = head[u], head[u] = p;
q->v = u, q->w = w, q->next = head[v], head[v] = q;
}
int find(int x)
{
if(p[x] == 0) return x;
else return p[x] = find(p[x]);
}
bool Union(int x, int y)
{
int px = find(x);
int py = find(y);
if(px == py)
return false;
p[px] = py;
return true;
}
void dfs(int u)
{
int v;
vis[u] = 1;
for(node *p = head[u]; p; p = p->next)
if(!vis[v = p->v])
{
dep[v] = dep[u] + 1;
fa[v][0] = u;
s[v][0] = p->w;
for(int j = 1; fa[v][j - 1] != 0; j++)
fa[v][j] = fa[fa[v][j - 1]][j - 1],
s[v][j] = min(s[v][j - 1], s[fa[v][j - 1]][j - 1]);
//预处理
dfs(v);
}
}
int query(int u, int v)//倍增
{
int ret = 2147483647;//返回值。因为求最小,所以初始赋最大
if(dep[u] < dep[v]) swap(u, v);
for(int i = 15; i >= 0; i--)
if(fa[u][i] != 0 && dep[fa[u][i]] >= dep[v])
ret = min(ret, s[u][i]), u = fa[u][i];//一定要先统计最小值
if(u == v) return ret;
for(int i = 15; i >= 0; i--)
if(fa[u][i] != fa[v][i])
ret = min(ret, min(s[u][i], s[v][i])), //统计最小
u = fa[u][i],
v = fa[v][i];
ret = min(ret, min(s[u][0], s[v][0]));//不要忘了最后还有两条边
return ret;
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; i++)
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
sort(edge + 1, edge + m + 1);
for(int i = 1; i <= m; i++)
if(Union(edge[i].u, edge[i].v))
addedge(edge[i].u, edge[i].v, edge[i].w);
dfs(1);
scanf("%d", &q);
for(int i = 1; i <= q; i++)
{
int u, v;
scanf("%d%d", &u, &v);
if(find(u) != find(v))
{
printf("-1\n");
continue ;
}
printf("%d\n", query(u, v));
}
return 0;
}