建模简析:

/*
HDU 6039 - Gear Up [ 建模,线段树,图论 ] | 2017 Multi-University Training Contest 1
题意:
给你n个齿轮,有些齿轮是同轴的(角速度相同),有些是同边的(线速度相同),任意两个齿轮两种关系中至多只有一种,且任意两个齿轮之间只有一条路径
给出所有齿轮的半径和 m组两两之间的关系
两种操作:1. 把改变某个齿轮的半径; 2. 赋予某个齿轮一个角速度,问所有齿轮中最大的角速度是多少
分析:
相邻齿轮连边建图,原图是森林,按单棵树考虑。
由于同轴的齿轮在角速度上相同,故可缩点成齿轮组,新图上各组齿轮同边,且任意两个齿轮组只有一对齿轮同边
单棵树上的齿轮在角速度上有着倍数关系,故可以以某一个齿轮为参照,维护别的齿轮和它在角速度上的倍数
可以想象,以根节点为参照,齿轮组 u 对于根节点的角速度的倍数与其直接相邻的齿轮 f 的关系 Ku = Kf * Rf / Ru
当某个齿轮半径改变后,相当于区间修改子树的倍数,查询则是查询该齿轮所在树的最大值
大体看得出线段树模型,根据dfs序维护,但是乘法不易维护,则将上表达式取对数:log2(Ku) = log2(Kf) + log2(Rf) - log2(Ru)
维护对数则只需维护加减法,由于题中半径均为2的幂次,故对数取以二为底 查询操作容易写,修改操作需分类讨论
1.该齿轮是直接与上一个齿轮组同边的齿轮
该齿轮变大,同轴所有齿轮角速度变慢,与该齿轮直接同边的子树上的齿轮组不受影响,反之亦然
2.该齿轮不是直接与上一个齿轮组同边的齿轮
该齿轮变大,同轴所有齿轮角速度不受影响,与该齿轮直接同边的子树上的齿轮组变快,反之亦然 具体操作时,维护两个dfs序,一个是同轴齿轮组的整棵子树的dfs序,另一个是与该齿轮直接同边的子树dfs序
维护后一个dfs序时,可对于每一个节点,把这个节点所有连接的点排序,使得和该点同边的点在对应 vector 中的前缀里(就不用缩点了) 编码时长:8小时(-INF)
*/
#include <bits/stdc++.h>
using namespace std;
const int N = 100005;
const int INF = 0x3f3f3f3f;
double ln2 = log(2.);
struct Edge{
int v, type;
};
bool cmp(Edge a, Edge b) {
return a.type > b.type;
}
vector<Edge> edge[N];
int rad[N], rate[N], f[N], rt[N];
int l[N], r[N], ll[N], rr[N], pos, p[N];
int n, m, q;
void init(){
for (int i = 0; i < N; i++) {
edge[i].clear();
ll[i] = INF;
l[i] = r[i] = rr[i] = 0;
f[i] = 0;
}
pos = 0;
}
void dfs(int u, int pre)
{
sort(edge[u].begin(), edge[u].end(), cmp);
rt[u] = rt[pre];
l[u] = ++pos;
p[pos] = u;
for (const auto& e : edge[u])
{
if (e.v == pre) continue;
if (e.type == 1) {
rate[e.v] = rad[u] - rad[e.v] + rate[u];
f[e.v] = e.v;
ll[u] = min(ll[u], pos+1);
dfs(e.v, u);
rr[u] = max(rr[u], pos);
} else {
rate[e.v] = rate[u];
f[e.v] = f[u];
dfs(e.v, u);
}
}
r[u] = pos;
}
int Max[N<<2], add[N<<2];
void Up(int x) {
Max[x] = max(Max[x<<1], Max[x<<1|1]);
}
void Down(int x) {
if (add[x]) {
Max[x<<1] += add[x];
Max[x<<1|1] += add[x];
add[x<<1] += add[x];
add[x<<1|1] += add[x];
add[x] = 0;
}
}
void Build(int l, int r, int x) {
add[x] = 0;
if (l == r) {
Max[x] = rate[p[l]]; return;
}
int mid = (l+r) >> 1;
Build(l, mid, x<<1); Build(mid+1, r, x<<1|1);
Up(x);
}
void Change(int L, int R, int num, int l, int r, int x) {
if (L <= l && r <= R) {
add[x] += num; Max[x] += num;
return;
}
Down(x);
int mid = (l + r) >> 1;
if (L <= mid) Change(L, R, num, l, mid, x<<1);
if (mid < R) Change(L, R, num, mid+1, r, x<<1|1);
Up(x);
}
int Query(int L, int R, int l, int r, int x) {
if (L <= l && r <= R) return Max[x];
Down(x);
int mid = (l+r) >> 1;
int res = -INF;
if (L <= mid) res = max(res, Query(L, R, l, mid, x<<1));
if (R > mid) res = max(res, Query(L, R, mid+1, r, x<<1|1));
return res;
}
int main()
{
int tt = 0, i, a, x, y;
while (~scanf("%d%d%d", &n, &m, &q))
{
init();
for (i = 1; i <= n; i++)
{
scanf("%d", &rad[i]);
rad[i] = log2(rad[i]);
}
for (i = 1; i <= m; i++)
{
scanf("%d%d%d", &a, &x, &y);
edge[x].push_back(Edge{y, a});
edge[y].push_back(Edge{x, a});
}
for (i = 1; i <= n; i++)
if (!f[i]) {
rt[i] = f[i] = i;
rate[i] = 0;
dfs(i, i);
}
Build(1, n, 1);
printf("Case #%d:\n", ++tt);
while (q--)
{
scanf("%d%d%d", &a, &x, &y);
if (a == 1)
{
y = log2(y);
if (f[x] == x && rt[x] != x) Change(l[x], r[x], rad[x]-y, 1, n, 1);
if (ll[x] <= rr[x]) Change(ll[x], rr[x], y-rad[x], 1, n, 1);
rad[x] = y;
}
else
{
int km = Query(l[rt[x]], r[rt[x]], 1, n, 1);
int k = Query(l[x], l[x], 1, n, 1);
double au = log2(y) + km - k;
printf("%.3f\n", au*ln2);
}
}
}
}

  

按标程的思路,不同的主要是缩点:

#include <bits/stdc++.h>
using namespace std;
const int N = 100005;
const int INF = 0x3f3f3f3f;
double ln2 = log(2.);
int f[N];
int sf(int x) {
return x == f[x] ? x : f[x] = sf(f[x]);
}
struct Edge{ int v, w, dis; };
vector<int> edge[N];
vector<Edge> lnk[N];
int rad[N], rt[N], rate[N], up[N];
int l[N], r[N], ll[N], rr[N], pos;
int n, m, q;
void init()
{
for (int i = 0; i < N; i++)
{
f[i] = i;
edge[i].clear();
lnk[i].clear();
l[i] = r[i] = 0;
ll[i] = INF;
rt[i] = up[i]= rr[i] = 0;
}
pos = 0;
}
void dfs(int u, int pre, int root, int dis)
{
rt[u] = root;
l[u] = ++pos;
rate[l[u]] = dis;
for (const auto &e: lnk[u])
{
if (pre == e.v) {
up[e.w] = 1;
} else {
ll[e.w] = min(ll[e.w], pos+1);
dfs(e.v, u, root, dis+e.dis);
rr[e.w] = max(rr[e.w], pos);
}
}
r[u] = pos;
}
int Max[N<<2], add[N<<2];
void Up(int x) {
Max[x] = max(Max[x<<1], Max[x<<1|1]);
}
void Down(int x) {
if (add[x]) {
Max[x<<1] += add[x];
Max[x<<1|1] += add[x];
add[x<<1] += add[x];
add[x<<1|1] += add[x];
add[x] = 0;
}
}
void Build(int l, int r, int x) {
add[x] = 0;
if (l == r) {
Max[x] = rate[l]; return;
}
int mid = (l+r) >> 1;
Build(l, mid, x<<1); Build(mid+1, r, x<<1|1);
Up(x);
}
void Change(int L, int R, int num, int l, int r, int x) {
if (L <= l && r <= R) {
add[x] += num; Max[x] += num;
return;
}
Down(x);
int mid = (l + r) >> 1;
if (L <= mid) Change(L, R, num, l, mid, x<<1);
if (mid < R) Change(L, R, num, mid+1, r, x<<1|1);
Up(x);
}
int Query(int L, int R, int l, int r, int x) {
if (L == 0 || R == 0) return 0;
if (L <= l && r <= R) return Max[x];
Down(x);
int mid = (l+r) >> 1;
int res = -INF;
if (L <= mid) res = max(res, Query(L, R, l, mid, x<<1));
if (R > mid) res = max(res, Query(L, R, mid+1, r, x<<1|1));
return res;
}
int main()
{
int tt = 0, i, a, x, y;
while (~scanf("%d%d%d", &n, &m, &q))
{
init();
for (i = 1; i <= n; i++)
{
scanf("%d", &rad[i]);
rad[i] = log2(rad[i]);
}
for (i = 1; i <= m; i++)
{
scanf("%d%d%d", &a, &x, &y);
if (a == 1)
{
edge[x].push_back(y);
edge[y].push_back(x);
}
else f[sf(x)] = sf(y);
}
for (i = 1; i <= n; i++)
for (auto& x: edge[i])
lnk[sf(i)].push_back(Edge{sf(x), i, rad[i] - rad[x]});
for (i = 1; i <= n; i++)
if (sf(i) == i && !rt[i])
dfs(i, i, i, 0);
Build(1, pos, 1);
printf("Case #%d:\n", ++tt);
while (q--)
{
scanf("%d%d%d", &a, &x, &y);
if (a == 1)
{
y = log2(y);
int fx = sf(x);
if (up[x]) Change(l[fx], r[fx], rad[x]-y, 1, pos, 1);
if (ll[x] <= rr[x]) Change(ll[x], rr[x], y-rad[x], 1, pos, 1);
rad[x] = y;
} else {
x = sf(x);
int km = Query(l[rt[x]], r[rt[x]], 1, pos, 1);
int k = Query(l[x], l[x], 1, pos, 1);
double au = log2(y) + km - k;
printf("%.3f\n", au*ln2);
}
}
}
}

  

05-12 21:10