GTY's gay friends
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
【Problem Description】
GTY has n gay friends. To manage them conveniently, every morning he ordered all his gay friends to stand in a line. Every gay friend has a characteristic value ai , to express how manly or how girlish he is. You, as GTY's assistant, have to answer GTY's queries. In each of GTY's queries, GTY will give you a range [l,r] . Because of GTY's strange hobbies, he wants there is a permutation [1..r−l+1] in [l,r]. You need to let him know if there is such a permutation or not.
【Input】
Multi test cases (about 3) . The first line contains two integers n and m ( 1≤n,m≤1000000 ), indicating the number of GTY's gay friends and the number of GTY's queries. the second line contains n numbers seperated by spaces. The ith number ai ( 1≤ai≤n ) indicates GTY's ith gay friend's characteristic value. The next m lines describe GTY's queries. In each line there are two numbers l and r seperated by spaces ( 1≤l≤r≤n ), indicating the query range.
【Output】
For each query, if there is a permutation [1..r−l+1]
in [l,r]
, print 'YES', else print 'NO'.
in [l,r]
, print 'YES', else print 'NO'.
【Sample Input】
【Sample Output】
YES
NO
YES
YES
YES
YES
NO
【题意】
给出一个数列,询问连续的从l开始到r为止的数是否刚好能够组成从1开始到r-l+1的数列。
【分析】
每一次询问都是一个区间询问。
对于每一个区间询问,需要判断区间内的数是否刚好可以组成1到k的连续数列,主要的判断标准有两个:
1.区间数字的总和与(1+k)*k/2相等;
2.保证区间内所有数都只出现一次。
第一个可以在读入数据时用前缀和解决。
第二个就要用到线段树了,读入时预处理记录下与当前数相同的数最近一次出现的位置。询问l~r的区间时,检索每个数的最近出现位置位置,若得到的所有结果都在区间左端的左边,那就说明区间中所有的数都是不重复出现的,则满足条件。这里就是用线段树判断区间最大值小于区间左端的过程了。
/* ***********************************************
MYID : Chen Fan
LANG : G++
PROG : HDU5172
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int N=1e6+; int last[N],a,sum[N]; typedef struct treetyp
{
int a,b,l,r,data;
} treetype;
treetype tree[*N];
int treetail; void maketree(int l,int r)
{
treetail++;
int now=treetail;
tree[now].a=l;
tree[now].b=r;
if (l<r)
{
tree[now].l=treetail+;
maketree(l,(l+r)/);
tree[now].r=treetail+;
maketree((l+r)/+,r);
}
} void add(int n,int i,int data)
{
if (tree[n].data<data) tree[n].data=data;
if (i==tree[n].a&&i==tree[n].b) return ;
else if (i<=(tree[n].a+tree[n].b)/) add(tree[n].l,i,data);
else add(tree[n].r,i,data);
} int res; void search(int n,int a,int b)
{
if (tree[n].a>=a&&tree[n].b<=b)
{
if (res<tree[n].data) res=tree[n].data;
return ;
}
if (tree[n].a==tree[n].b) return ;
if (a<=(tree[n].a+tree[n].b)/) search(tree[n].l,a,b);
if (b>=(tree[n].a+tree[n].b)/+) search(tree[n].r,a,b);
} int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==)
{
memset(sum,,sizeof(sum));
memset(last,,sizeof(last)); treetail=;
maketree(,n);
for (int i=;i<=n;i++)
{
scanf("%d",&a);
sum[i]=sum[i-]+a;
add(,i,last[a]);
last[a]=i;
} for (int i=;i<=m;i++)
{
int l,r;
scanf("%d%d",&l,&r);
if ((r-l+)*(r-l+)/==sum[r]-sum[l-])
{
res=;
search(,l,r);
if (res<l) printf("YES\n");
else printf("NO\n");
} else printf("NO\n");
}
} return ;
}