我相信大家都很熟悉DCL,对于缺少实践经验的程序开发人员来说,DCL的学习基本限制在单例模式,但我发现在高并发场景中会经常遇到需要用到DCL的场景,但并非用做单例模式,其实DCL的核心思想和CopyOnWrite很相似,就是在需要的时候才加锁;为了说明这个观点,我先把单例的经典代码防止如下:

  先说明几个关键词:

  volatile:保证线程的可见性,有序性;这两点非常重要,可见性让线程可以马上获释主存变化,二有序性避免指令重排序出现问题;

public class Singleton {
//通过volatile关键字来确保安全
private volatile static Singleton singleton; private Singleton(){} public static Singleton getInstance(){
if(singleton == null){
synchronized (Singleton.class){
if(singleton == null){
singleton = new Singleton();
}
}
}
return singleton;
}
}

  大家可以知道,这段代码是没有性能瓶颈的线程安全(当然,用了volatile是有一定的性能影响,但起码不需要竞争锁);这代码只会在需要的时候才加锁,这就是DCL的需要时加锁的特性,由第一个检查check保证(也就是if (singleton == null));

  但DCL的需要时才加锁的魅力不仅仅如此场景而已,我们看一个需求:一个不要求实时性的更新,所有线程公用一个资源,而且只有满足某个条件的时候才更新,那么多线程需要访问缓存时,是否需要加锁呢?不需要的,看如下代码:

private static volatile JSONArray cache = new JSONArray(Collections.synchronizedList(new LinkedList<>()));

public static int updateAeProduct(JSONObject aeProduct,String productId,boolean isFlush){
JSONObject task = new JSONObject();
String whereStr ="{\"productId\": {\"operation\": \"eq\", \"value\":\""+productId+"\" },\"provider\":{\"operation\": \"eq\", \"value\":\"aliExpress\" }}";
task.put("where",JSON.parseObject(whereStr));
task.put("params",aeProduct);
cache.add(task);
if(cache.size()>2 ||isFlush){
// 争夺更新权
JSONArray temp=cache;
synchronized (updateLock){
if(temp==cache&&cache.contains(task)){
cache = new JSONArray(Collections.synchronizedList(new LinkedList<>()));
}else {
return 1;
}
}
// 拥有更新权的继续更新
try {
Map<String,String> headers = new HashMap<>();
headers.put("Content-Type","application/json");
String response = HttpUtils.post(updateapi,temp.toJSONString(),headers);
JSONObject result = JSON.parseObject(response);
if(result!=null&&"Success".equals(result.getString("msg"))){
// System.out.println("=========================完成一次批量存储,成功Flush:"+temp.size());
}
} catch (Exception e) {
System.out.println("更新丢失,策略补救");
e.printStackTrace();
}
}
return 1;
}

  这样保证了性能,也做到了缓存的线程安全;这就是单例的厉害;我在项目中经常遇到该类场景,下面给出一个任务计时器的代码:

package com.mobisummer.spider.master.component;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.atomic.AtomicLong; public class RateCalculator { ConcurrentHashMap<String,AtomicLong> taskInfo = new ConcurrentHashMap(); volatile boolean isStart =false; Object lock = new Object(); AtomicLong allCount = new AtomicLong(); private ScheduledExecutorService scheduledThreadPool; public void consume(Long num,String taskId){
if(taskInfo.containsKey(taskId)){
taskInfo.get(taskId).addAndGet(num);
}else {
calculateTask(num,taskId);
}
allCount.addAndGet(num);
calculateAll(num,taskId);
} /**
* 计算任务
* @param num
* @param taskId
*/
private void calculateTask(Long num,String taskId){
synchronized (lock){
if(taskInfo.containsKey(taskId)){
return;
}else {
taskInfo.put(taskId,new AtomicLong());
Thread countor = new Thread(new Runnable() {
@Override
public void run() {
while (true){
double startTime =System.currentTimeMillis();
double startCount = taskInfo.get(taskId).get();
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
System.out.println("计数器失效");
}
double endTime =System.currentTimeMillis();
double endCount = taskInfo.get(taskId).get();
double percent =(endCount-startCount)/((endTime - startTime)/1000);
// System.out.println("目前总成功爬取速率:==========="+percent+"=======目前处理总数========:"+allCount);
System.out.println("目前"+taskId+"成功爬取速率:==========="+percent+"=======目前"+taskId+"处理总数========:"+endCount);
}
}
});
countor.start();
}
}
} /**
* 计算所有任务
* @param num
* @param taskId
*/
private void calculateAll(Long num,String taskId){
if(isStart){
return;
}else {
synchronized (this){
if(isStart){
return;
}else {
isStart =true;
Thread countor = new Thread(new Runnable() {
@Override
public void run() {
while (true){
double startTime =System.currentTimeMillis();
double startCount = allCount.get();
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
System.out.println("计数器失效");
}
double endTime =System.currentTimeMillis();
double endCount = allCount.get();
double percent =(endCount-startCount)/((endTime - startTime)/1000);
System.out.println("目前总成功爬取速率:==========="+percent+"=======目前处理总数========:"+allCount);
// System.out.println("目前"+taskId+"成功爬取速率:==========="+percent+"=======目前"+taskId+"处理总数========:"+allCount);
}
}
});
countor.start();
}
}
}
}
}

  同样的,线程安全的双重检测,这就是DCL的魅力;

05-07 15:43