Problem Description

任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、  这是一个二人游戏;
2、  一共有3堆石子,数量分别是m, n, p个;
3、  两人轮流走;
4、  每走一步可以选择任意一堆石子,然后取走f个;
5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、  最先取光所有石子的人为胜者;
假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。

Input

输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。

Output

如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。

Sample Input

1 1 1
1 4 1
0 0 0

Sample Output

Fibo
Nacci

Author

lcy

Source

ACM Short Term Exam_2007/12/13

Recommend

lcy

思路:

这是一道SG函数的裸题,用到了SG函数的和(多堆石子的Nim游戏)

我们可以定义有向图游戏的和(Sum of Graph Games):

设G1、G2、……、Gn是n个有向图游戏,定义游戏G是G1、G2、……、Gn的和,游戏G的移动规则是:任选一个子游戏Gi并移动上面的棋子。

Sprague-Grundy Theorem:g(G)=g(G1)^g(G2)^...^g(Gn)。也就是说,游戏的和的SG函数值是它的所有子游戏的SG函数值的异或。

这里,每一堆石子都可以看作一个有向图游戏,它们的和即为整个大游戏,所以,运用Sprague-Grundy Theorem即可

这篇博客写的很好:

http://www.cnitblog.com/weiweibbs/articles/42735.html

代码:

#include<bits/stdc++.h>
using namespace std;
int f[19];
int sg[1050];
bool tmp[19];
int m,n,p;
int N;
void fi()
{
f[0]=1;f[1]=2;
for(int i=2;i<19;i++){
f[i]=f[i-1]+f[i-2];
}
}
void s()
{
fi();
sg[0]=0;
for(int i=1;i<N;i++){
memset(tmp,0,sizeof(tmp));
for(int j=0;f[j]<=i;j++){
tmp[sg[i-f[j]]]=1;
}
for(int j=0;j<19;j++){
if(!tmp[j]){
sg[i]=j;
break;
}
}
}
}
int main()
{
N=1000;
s();
while(cin>>m>>n>>p){
if(m==0&&n==0&&p==0)
break;
if(sg[m]^sg[n]^sg[p]){
cout<<"Fibo"<<endl;
}
else cout<<"Nacci"<<endl;
}
}

新年第一发,我要来开光~~~~~~

//
// _oo0oo_
// o8888888o
// 88" . "88
// (| -_- |)
// 0\ = /0
// ___/`---'\___
// .' \\| |// '.
// / \\||| : |||// \
// / _||||| -:- |||||- \
// | | \\\ - /// | |
// | \_| ''\---/'' |_/ |
// \ .-\__ '-' ___/-. /
// ___'. .' /--.--\ `. .'___
// ."" '< `.___\_<|>_/___.' >' "".
// | | : `- \`.;`\ _ /`;.`/ - ` : | |
// \ \ `_. \_ __\ /__ _/ .-` / /
// =====`-.____`.___ \_____/___.-`___.-'=====
// `=---='
//
//
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// 佛祖保佑 永无BUG
//
//
//

新的一年,加油!

05-18 13:08