前言
在生产中已有实践,本组件仅做个人学习交流分享使用。github:https://github.com/axinSoochow/redis-caffeine-cache-starter
个人水平有限,欢迎大家在评论区轻喷。
所谓二级缓存
平时我们会将数据存储到磁盘上,如:数据库。如果每次都从数据库里去读取,会因为磁盘本身的IO影响读取速度,所以就有了像redis这种的内存缓存。可以将数据读取出来放到内存里,这样当需要获取数据时,就能够直接从内存中拿到数据返回,能够很大程度的提高速度。
但是一般redis是单独部署成集群,所以会有网络IO上的消耗,虽然与redis集群的链接已经有连接池这种工具,但是数据传输上也还是会有一定消耗。所以就有了进程内缓存,如:caffeine。当应用内缓存有符合条件的数据时,就可以直接使用,而不用通过网络到redis中去获取,这样就形成了两级缓存。应用内缓存叫做一级缓存,远程缓存(如redis)叫做二级缓存。
系统是否需要缓存
- CPU占用:如果你有某些应用需要消耗大量的cpu去计算获得结果。
- 数据库IO占用:如果你发现你的数据库连接池比较空闲,那么不应该用缓存。但是如果数据库连接池比较繁忙,甚至经常报出连接不够的报警,那么是时候应该考虑缓存了。
分布式二级缓存的优势
Redis用来存储热点数据,Redis中没有的数据则直接去数据库访问。
已经有Redis了,干嘛还需要了解Guava,Caffeine这些进程缓存呢:
- Redis如果不可用,这个时候我们只能访问数据库,很容易造成雪崩,但一般不会出现这种情况。
- 访问Redis会有一定的网络I/O以及序列化反序列化开销,虽然性能很高但是其终究没有本地方法快,可以将最热的数据存放在本地,以便进一步加快访问速度。这个思路并不是我们做互联网架构独有的,在计算机系统中使用L1,L2,L3多级缓存,用来减少对内存的直接访问,从而加快访问速度。
所以如果仅仅是使用Redis,能满足我们大部分需求,但是当需要追求更高的性能以及更高的可用性的时候,那就不得不了解多级缓存。
二级缓存操作过程
如何使用组件?
组件是基于Spring Cache框架上改造的,在项目中使用分布式缓存,仅仅需要在缓存注解上增加:cacheManager ="L2_CacheManager",或者 cacheManager = CacheRedisCaffeineAutoConfiguration.分布式二级缓存
//这个方法会使用分布式二级缓存来提供查询
@Cacheable(cacheNames = CacheNames.CACHE_12HOUR, cacheManager = "L2_CacheManager")
public Config getAllValidateConfig() {
}
如果你想既使用分布式缓存,又想用分布式二级缓存组件,那你需要向Spring注入一个 @Primary 的 CacheManager bean
@Primary
@Bean("deaultCacheManager")
public RedisCacheManager cacheManager(RedisConnectionFactory factory) {
// 生成一个默认配置,通过config对象即可对缓存进行自定义配置
RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig();
// 设置缓存的默认过期时间,也是使用Duration设置
config = config.entryTtl(Duration.ofMinutes(2)).disableCachingNullValues();
// 设置一个初始化的缓存空间set集合
Set<String> cacheNames = new HashSet<>();
cacheNames.add(CacheNames.CACHE_15MINS);
cacheNames.add(CacheNames.CACHE_30MINS);
// 对每个缓存空间应用不同的配置
Map<String, RedisCacheConfiguration> configMap = new HashMap<>();
configMap.put(CacheNames.CACHE_15MINS, config.entryTtl(Duration.ofMinutes(15)));
configMap.put(CacheNames.CACHE_30MINS, config.entryTtl(Duration.ofMinutes(30)));
// 使用自定义的缓存配置初始化一个cacheManager
RedisCacheManager cacheManager = RedisCacheManager.builder(factory)
.initialCacheNames(cacheNames) // 注意这两句的调用顺序,一定要先调用该方法设置初始化的缓存名,再初始化相关的配置
.withInitialCacheConfigurations(configMap)
.build();
return cacheManager;
}
然后:
//这个方法会使用分布式二级缓存
@Cacheable(cacheNames = CacheNames.CACHE_12HOUR, cacheManager = "L2_CacheManager")
public Config getAllValidateConfig() {
}
//这个方法会使用分布式缓存
@Cacheable(cacheNames = CacheNames.CACHE_12HOUR)
public Config getAllValidateConfig2() {
}
核心实现方法
核心其实就是实现 org.springframework.cache.CacheManager接口与继承org.springframework.cache.support.AbstractValueAdaptingCache,在Spring缓存框架下实现缓存的读与写。
RedisCaffeineCacheManager实现CacheManager 接口
RedisCaffeineCacheManager.class 主要来管理缓存实例,根据不同的 CacheNames 生成对应的缓存管理bean,然后放入一个map中。
package com.axin.idea.rediscaffeinecachestarter.support;
import com.axin.idea.rediscaffeinecachestarter.CacheRedisCaffeineProperties;
import com.github.benmanes.caffeine.cache.Caffeine;
import com.github.benmanes.caffeine.cache.stats.CacheStats;
import lombok.extern.slf4j.Slf4j;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.cache.Cache;
import org.springframework.cache.CacheManager;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.util.CollectionUtils;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.TimeUnit;
@Slf4j
public class RedisCaffeineCacheManager implements CacheManager {
private final Logger logger = LoggerFactory.getLogger(RedisCaffeineCacheManager.class);
private static ConcurrentMap<String, Cache> cacheMap = new ConcurrentHashMap<String, Cache>();
private CacheRedisCaffeineProperties cacheRedisCaffeineProperties;
private RedisTemplate<Object, Object> stringKeyRedisTemplate;
private boolean dynamic = true;
private Set<String> cacheNames;
{
cacheNames = new HashSet<>();
cacheNames.add(CacheNames.CACHE_15MINS);
cacheNames.add(CacheNames.CACHE_30MINS);
cacheNames.add(CacheNames.CACHE_60MINS);
cacheNames.add(CacheNames.CACHE_180MINS);
cacheNames.add(CacheNames.CACHE_12HOUR);
}
public RedisCaffeineCacheManager(CacheRedisCaffeineProperties cacheRedisCaffeineProperties,
RedisTemplate<Object, Object> stringKeyRedisTemplate) {
super();
this.cacheRedisCaffeineProperties = cacheRedisCaffeineProperties;
this.stringKeyRedisTemplate = stringKeyRedisTemplate;
this.dynamic = cacheRedisCaffeineProperties.isDynamic();
}
//——————————————————————— 进行缓存工具 ——————————————————————
/**
* 清除所有进程缓存
*/
public void clearAllCache() {
stringKeyRedisTemplate.convertAndSend(cacheRedisCaffeineProperties.getRedis().getTopic(), new CacheMessage(null, null));
}
/**
* 返回所有进程缓存(二级缓存)的统计信息
* result:{"缓存名称":统计信息}
* @return
*/
public static Map<String, CacheStats> getCacheStats() {
if (CollectionUtils.isEmpty(cacheMap)) {
return null;
}
Map<String, CacheStats> result = new LinkedHashMap<>();
for (Cache cache : cacheMap.values()) {
RedisCaffeineCache caffeineCache = (RedisCaffeineCache) cache;
result.put(caffeineCache.getName(), caffeineCache.getCaffeineCache().stats());
}
return result;
}
//—————————————————————————— core —————————————————————————
@Override
public Cache getCache(String name) {
Cache cache = cacheMap.get(name);
if(cache != null) {
return cache;
}
if(!dynamic && !cacheNames.contains(name)) {
return null;
}
cache = new RedisCaffeineCache(name, stringKeyRedisTemplate, caffeineCache(name), cacheRedisCaffeineProperties);
Cache oldCache = cacheMap.putIfAbsent(name, cache);
logger.debug("create cache instance, the cache name is : {}", name);
return oldCache == null ? cache : oldCache;
}
@Override
public Collection<String> getCacheNames() {
return this.cacheNames;
}
public void clearLocal(String cacheName, Object key) {
//cacheName为null 清除所有进程缓存
if (cacheName == null) {
log.info("清除所有本地缓存");
cacheMap = new ConcurrentHashMap<>();
return;
}
Cache cache = cacheMap.get(cacheName);
if(cache == null) {
return;
}
RedisCaffeineCache redisCaffeineCache = (RedisCaffeineCache) cache;
redisCaffeineCache.clearLocal(key);
}
/**
* 实例化本地一级缓存
* @param name
* @return
*/
private com.github.benmanes.caffeine.cache.Cache<Object, Object> caffeineCache(String name) {
Caffeine<Object, Object> cacheBuilder = Caffeine.newBuilder();
CacheRedisCaffeineProperties.CacheDefault cacheConfig;
switch (name) {
case CacheNames.CACHE_15MINS:
cacheConfig = cacheRedisCaffeineProperties.getCache15m();
break;
case CacheNames.CACHE_30MINS:
cacheConfig = cacheRedisCaffeineProperties.getCache30m();
break;
case CacheNames.CACHE_60MINS:
cacheConfig = cacheRedisCaffeineProperties.getCache60m();
break;
case CacheNames.CACHE_180MINS:
cacheConfig = cacheRedisCaffeineProperties.getCache180m();
break;
case CacheNames.CACHE_12HOUR:
cacheConfig = cacheRedisCaffeineProperties.getCache12h();
break;
default:
cacheConfig = cacheRedisCaffeineProperties.getCacheDefault();
}
long expireAfterAccess = cacheConfig.getExpireAfterAccess();
long expireAfterWrite = cacheConfig.getExpireAfterWrite();
int initialCapacity = cacheConfig.getInitialCapacity();
long maximumSize = cacheConfig.getMaximumSize();
long refreshAfterWrite = cacheConfig.getRefreshAfterWrite();
log.debug("本地缓存初始化:");
if (expireAfterAccess > 0) {
log.debug("设置本地缓存访问后过期时间,{}秒", expireAfterAccess);
cacheBuilder.expireAfterAccess(expireAfterAccess, TimeUnit.SECONDS);
}
if (expireAfterWrite > 0) {
log.debug("设置本地缓存写入后过期时间,{}秒", expireAfterWrite);
cacheBuilder.expireAfterWrite(expireAfterWrite, TimeUnit.SECONDS);
}
if (initialCapacity > 0) {
log.debug("设置缓存初始化大小{}", initialCapacity);
cacheBuilder.initialCapacity(initialCapacity);
}
if (maximumSize > 0) {
log.debug("设置本地缓存最大值{}", maximumSize);
cacheBuilder.maximumSize(maximumSize);
}
if (refreshAfterWrite > 0) {
cacheBuilder.refreshAfterWrite(refreshAfterWrite, TimeUnit.SECONDS);
}
cacheBuilder.recordStats();
return cacheBuilder.build();
}
}
RedisCaffeineCache 继承 AbstractValueAdaptingCache
核心是get方法与put方法。
package com.axin.idea.rediscaffeinecachestarter.support;
import com.axin.idea.rediscaffeinecachestarter.CacheRedisCaffeineProperties;
import com.github.benmanes.caffeine.cache.Cache;
import lombok.Getter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.cache.support.AbstractValueAdaptingCache;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.util.StringUtils;
import java.time.Duration;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;
public class RedisCaffeineCache extends AbstractValueAdaptingCache {
private final Logger logger = LoggerFactory.getLogger(RedisCaffeineCache.class);
private String name;
private RedisTemplate<Object, Object> redisTemplate;
@Getter
private Cache<Object, Object> caffeineCache;
private String cachePrefix;
/**
* 默认key超时时间 3600s
*/
private long defaultExpiration = 3600;
private Map<String, Long> defaultExpires = new HashMap<>();
{
defaultExpires.put(CacheNames.CACHE_15MINS, TimeUnit.MINUTES.toSeconds(15));
defaultExpires.put(CacheNames.CACHE_30MINS, TimeUnit.MINUTES.toSeconds(30));
defaultExpires.put(CacheNames.CACHE_60MINS, TimeUnit.MINUTES.toSeconds(60));
defaultExpires.put(CacheNames.CACHE_180MINS, TimeUnit.MINUTES.toSeconds(180));
defaultExpires.put(CacheNames.CACHE_12HOUR, TimeUnit.HOURS.toSeconds(12));
}
private String topic;
private Map<String, ReentrantLock> keyLockMap = new ConcurrentHashMap();
protected RedisCaffeineCache(boolean allowNullValues) {
super(allowNullValues);
}
public RedisCaffeineCache(String name, RedisTemplate<Object, Object> redisTemplate,
Cache<Object, Object> caffeineCache, CacheRedisCaffeineProperties cacheRedisCaffeineProperties) {
super(cacheRedisCaffeineProperties.isCacheNullValues());
this.name = name;
this.redisTemplate = redisTemplate;
this.caffeineCache = caffeineCache;
this.cachePrefix = cacheRedisCaffeineProperties.getCachePrefix();
this.defaultExpiration = cacheRedisCaffeineProperties.getRedis().getDefaultExpiration();
this.topic = cacheRedisCaffeineProperties.getRedis().getTopic();
defaultExpires.putAll(cacheRedisCaffeineProperties.getRedis().getExpires());
}
@Override
public String getName() {
return this.name;
}
@Override
public Object getNativeCache() {
return this;
}
@Override
public <T> T get(Object key, Callable<T> valueLoader) {
Object value = lookup(key);
if (value != null) {
return (T) value;
}
//key在redis和缓存中均不存在
ReentrantLock lock = keyLockMap.get(key.toString());
if (lock == null) {
logger.debug("create lock for key : {}", key);
keyLockMap.putIfAbsent(key.toString(), new ReentrantLock());
lock = keyLockMap.get(key.toString());
}
try {
lock.lock();
value = lookup(key);
if (value != null) {
return (T) value;
}
//执行原方法获得value
value = valueLoader.call();
Object storeValue = toStoreValue(value);
put(key, storeValue);
return (T) value;
} catch (Exception e) {
throw new ValueRetrievalException(key, valueLoader, e.getCause());
} finally {
lock.unlock();
}
}
@Override
public void put(Object key, Object value) {
if (!super.isAllowNullValues() && value == null) {
this.evict(key);
return;
}
long expire = getExpire();
logger.debug("put:{},expire:{}", getKey(key), expire);
redisTemplate.opsForValue().set(getKey(key), toStoreValue(value), expire, TimeUnit.SECONDS);
//缓存变更时通知其他节点清理本地缓存
push(new CacheMessage(this.name, key));
//此处put没有意义,会收到自己发送的缓存key失效消息
// caffeineCache.put(key, value);
}
@Override
public ValueWrapper putIfAbsent(Object key, Object value) {
Object cacheKey = getKey(key);
// 使用setIfAbsent原子性操作
long expire = getExpire();
boolean setSuccess;
setSuccess = redisTemplate.opsForValue().setIfAbsent(getKey(key), toStoreValue(value), Duration.ofSeconds(expire));
Object hasValue;
//setNx结果
if (setSuccess) {
push(new CacheMessage(this.name, key));
hasValue = value;
}else {
hasValue = redisTemplate.opsForValue().get(cacheKey);
}
caffeineCache.put(key, toStoreValue(value));
return toValueWrapper(hasValue);
}
@Override
public void evict(Object key) {
// 先清除redis中缓存数据,然后清除caffeine中的缓存,避免短时间内如果先清除caffeine缓存后其他请求会再从redis里加载到caffeine中
redisTemplate.delete(getKey(key));
push(new CacheMessage(this.name, key));
caffeineCache.invalidate(key);
}
@Override
public void clear() {
// 先清除redis中缓存数据,然后清除caffeine中的缓存,避免短时间内如果先清除caffeine缓存后其他请求会再从redis里加载到caffeine中
Set<Object> keys = redisTemplate.keys(this.name.concat(":*"));
for (Object key : keys) {
redisTemplate.delete(key);
}
push(new CacheMessage(this.name, null));
caffeineCache.invalidateAll();
}
/**
* 取值逻辑
* @param key
* @return
*/
@Override
protected Object lookup(Object key) {
Object cacheKey = getKey(key);
Object value = caffeineCache.getIfPresent(key);
if (value != null) {
logger.debug("从本地缓存中获得key, the key is : {}", cacheKey);
return value;
}
value = redisTemplate.opsForValue().get(cacheKey);
if (value != null) {
logger.debug("从redis中获得值,将值放到本地缓存中, the key is : {}", cacheKey);
caffeineCache.put(key, value);
}
return value;
}
/**
* @description 清理本地缓存
*/
public void clearLocal(Object key) {
logger.debug("clear local cache, the key is : {}", key);
if (key == null) {
caffeineCache.invalidateAll();
} else {
caffeineCache.invalidate(key);
}
}
//————————————————————————————私有方法——————————————————————————
private Object getKey(Object key) {
String keyStr = this.name.concat(":").concat(key.toString());
return StringUtils.isEmpty(this.cachePrefix) ? keyStr : this.cachePrefix.concat(":").concat(keyStr);
}
private long getExpire() {
long expire = defaultExpiration;
Long cacheNameExpire = defaultExpires.get(this.name);
return cacheNameExpire == null ? expire : cacheNameExpire.longValue();
}
/**
* @description 缓存变更时通知其他节点清理本地缓存
*/
private void push(CacheMessage message) {
redisTemplate.convertAndSend(topic, message);
}
}
关于分布式本地缓存失效
现在的线上生产的都是多个节点,如果本节点的缓存失效了,是需要通过中间件来通知其他节点失效消息的。本组件考虑到学习分享让大家引入的依赖少点,就直接通过 redis 来发送消息了,实际生产过程中换成成熟的消息中间件(kafka、RocketMQ)来做通知更为稳妥。