# -*- coding: utf-8 -*-
from sklearn.cluster import KMeans
from sklearn.externals import joblib
import numpy
feature =numpy.random.rand(40,20)
#调用kmeans类
clf = KMeans(n_clusters=9)
s = clf.fit(feature)
print s
#9个中心
print clf.cluster_centers_
#每个样本所属的簇
print clf.labels_
#用来评估簇的个数是否合适,距离越小说明簇分的越好,选取临界点的簇个数
print clf.inertia_
#进行预测
print clf.predict(feature)
#保存模型
joblib.dump(clf , 'c:/km.pkl')
#载入保存的模型
clf = joblib.load('c:/km.pkl')
'''
#用来评估簇的个数是否合适,距离越小说明簇分的越好,选取临界点的簇个数
for i in range(5,30,1):
clf = KMeans(n_clusters=i)
s = clf.fit(feature)
print i , clf.inertia_
'''