一、均值回归策略

1、什么是回归策略

金融量化分析【day112】:均值回归策略-LMLPHP

二、归一标准化

import numpy as np
a = np.random.uniform(100,5000,1000)
b = np.random.uniform(0.1,3.0,1000)
(a.min(),a.max())

  输出

金融量化分析【day112】:均值回归策略-LMLPHP

预处理

(a - a.min())/(a.max()-a.min())

  输出

金融量化分析【day112】:均值回归策略-LMLPHP

预处理

aa = (a - a.min())/(a.max()-a.min())
bb = (b - b.min())/(b.max()-b.min())
(aa.min(),aa.max())

  输出

金融量化分析【day112】:均值回归策略-LMLPHP

画图

aaa = (a - a.mean())/a.std()
import matplotlib.pyplot as plt
%matplotlib
plt.hist(aaa)

输出

金融量化分析【day112】:均值回归策略-LMLPHP

二、均值回归策略代码

# 导入函数库
import jqdata
import math
import numpy as np
import pandas as pd def initialize(context):
set_benchmark('000002.XSHG')
set_option('use_real_price', True)
set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock') g.security = get_index_stocks('000002.XSHG') g.ma_days = 30
g.stock_num = 10 run_monthly(handle, 1) def handle(context): sr = pd.Series(index=g.security)
for stack in sr.index:
ma = attribute_history(stack,g.stock_days)['close'].mean
p = get_current_data()[stack].day_open
ratio = (ma-p)/ma
sr[stock] = ratio
tohold = sr.nlarges(g.stock_num).index.values for stock in context.portfolio/positions:
if stock not in tohold:
order_target_value(stock, 0) tobuy = [stock for stock in tohold if stock not in context.portfolio.positions] if len(tobuy)>0:
cash = context.portfolio.available_cash
cash_every_stock = cash / len(tobuy) for stock in tobuy:
order_value(stock,cash_every_stock)

  

04-16 01:55